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Introduction
Air pollution is a serious environmental issue all over the 
world, and small airborne particulates (also called aerosols) are 
among the major causes. In 2012, according to a recent report 
from the World Health Organization (WHO), an estimated 
7 million people died of air pollution–related diseases. In 
Southeast Asia and the Western Pacific Regions where there 
is the largest air pollution–related burden, 2.6 million deaths 
were related to outdoor air pollution.1 Particulates with an 
aerodynamic equivalent diameter of 2.5 µm or less (PM2.5) are 
an important component of aerosols with respect to health 
and environmental impact.

PM2.5 can be readily inhaled and has a significant effect on 
human health (including ischemic heart disease, stroke, chronic 
obstructive pulmonary disease, and lung cancer).2 Exposure to 
PM2.5 has been associated with increased morbidity and mor-
tality.3,4 Many studies have shown that there are a large number 
of premature deaths, including cardiopulmonary and lung can-
cer deaths, as a result of exposure to PM2.5.5,6 Also, PM2.5 has 
been shown to have a severe impact on the environment. In the 
past few years, heavy smog caused by PM2.5 covered over 70 
cities in Northern China, and the abundance of PM2.5 in 
Beijing, capital of China, has peaked at more than 1000 µg/m3, 
40 times higher than the WHO standard.7–9 Shijiazhuang, a 
big city near Beijing, is considered to have the highest PM2.5 
pollution, it experienced smog for 322 of the 365 days in 2013, 
and the average abundance of PM2.5 in 2013 was 148.5 µg/m3, 
with a peak of 676 µg/m3.10–13

There is a strong relationship between climate change and 
aerosols due to aerosol radiative forcing (RF).14 The concept of 

RF was first introduced in studies of climate response to 
changes in solar insolation and CO2. It is used to assess and 
compare the anthropogenic and natural drivers of climate 
change.15 RFs have 2 effects on climate change: (1) direct and 
(2) indirect effects. The direct effect is the mechanism by which 
aerosols scatter and absorb shortwave and longwave radiations. 
The indirect effect is the mechanism by which aerosols modify 
the microphysical and the radiative properties, amount, and 
lifetime of clouds.16,17

In estimating the abundance of PM2.5, many studies have 
sought to overcome the spatial coverage limitation of the PM2.5 
measurement sites using remote sensing and satellite-derived 
aerosol optical depth (AOD) data,18,19 coupled with regression 
and/or numerical models. These studies showed that the rela-
tionships between PM2.5 and AOD are not applicable for sim-
ple regression models because they are a multivariate function 
of many parameters, including humidity, temperature, bound-
ary layer height, surface pressure, population density, topogra-
phy, wind speed, surface type, surface reflectivity, season, land 
use, normalized variance of rainfall events, size spectrum and 
phase of cloud particles, cloud cover, and so on.20–23 Further 
complications arise from the differences existing between sat-
ellite AOD products,24–27 the difference in spatial scales 
involved with the in situ PM2.5 observational data, the remote 
sensing data, and, finally, the sharp PM2.5 gradients existing 
across cities and close to sources.

Machine learning provides a broad range of multivariate 
regression algorithms for empirically estimating PM2.5 data 
when there is no clear and complete theoretical description, but 
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a set of useful observational data. In previous studies by Lary 
et al, machine learning was used to estimate global daily PM2.5 
data from 1997 to 2014, using in situ hourly PM2.5 observa-
tions from more than 8000 sites in 55 countries together with 
comprehensive contextual data on about 100 parameters drawn 
from satellite data, meteorology, and demographics.

This study is a practical application of the satellite estimate 
PM2.5 data product obtained by Lary et al from 2004 to 2013 
in the East Asia region (20°N to 45°N, 100°E to 145°E). In this 
region, there is a low density of observation sites for long-term 
monitoring (shown in Figure 1), but heavy air pollution. The 
data product has a resolution of 10 km × 10 km (approximately 
0.1° × 0.1°). Also, quite a new approach which combines self-
organizing map and random forests was applied for the pur-
pose of classifying the PM2.5 annual cycles of locations over 
East Asia. This was done by only depending on their morphol-
ogies and then obtaining the key meteorological and environ-
mental variables that distinguish annual cycles in a specific 
class from all other classes.

Datasets and Methods
Global PM2.5 data product
The PM2.5 observations (ground data) used for machine learn-
ing regression were obtained from the ground-based measure-
ment sites shown in Figure 1. North America, Europe, and 
some parts of Asia recorded the greatest density of measure-
ments, whereas places in the southern hemisphere, such as 
South America, Australia, New Zealand, and Africa, have 
measurement sites that are far from uniform with several gaps.

The satellite (remote sensing) data used for estimation 
were obtained from 3 satellite instruments: the Sea-viewing 
Wide Field-of-view Sensor (SeaWIFS) launched on August 
1, 1997,29 and 2 moderate-resolution imaging spectroradiom-
eter (MODIS) instruments: MODIS on Terra satellite (EOS 
AM) launched in 1999 and MODIS on National Aeronautics 
and Space Administration’s (NASA) Aqua (EOS PM) 
launched in 2002.30 Detailed development and description  
of the estimated PM2.5 data product are covered by the study 
by Lary et al.28,31

The meteorological and environmental data used in this 
study were retrieved from the NASA Modern Era 
Retrospective analysis for Research and Applications 
(MERRA), including 84 variables that describe the surface 
meteorology and soil state.32

The self-organizing map
When using large data sets to characterize a problem, it is often 
useful to apply an objective technique to classify the large data 
sets into subclasses. Self-organizing maps (SOMs) provide a 
way of performing such an unsupervised classification without 
any a priori assumption, a way to give the data “a voice.”33

However, even with the assistance of unsupervised classifi-
cation, high-dimensional data can still be challenging to visu-
alize, as this study dealt with a 36-dimensional space (the 
annual cycle was split into 36 ten-day windows). The SOM is 
a type of artificial neural network for performing unsupervised 
classification. Also, it is a data visualization and unsupervised 
classification technique that can reduce the dimensions of 

Figure 1. Over 8000 PM2.5 measurement sites (red squares) are located in 55 countries over the period 1997-2014. Background color shows the scale of 
global topography and bathymetry.28
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high-dimensional data using self-organizing neural net-
works.34 Like other forms of machine learning, an SOM oper-
ates in 2 phases: (1) the training phase and (2) the mapping 
phase. The map is built by training, using examples from the 
training dataset, and mapping determines the class for a new 
input vector.35 An SOM consists of a 2-dimensional regular 
grid of components called nodes. Each node is associated with 
a weight vector of the same dimension and a position in the 
map. The procedure for converting a vector from the input 
data space to the map is by finding the node with the most 
similar weight vector to the input data space.36,37

Random forest
Random forests were first introduced in 2001 by Leo Breiman.38 
They are a popular and efficient ensemble approach of statisti-
cal learning, useful for both classification and regression. A 
random forest is an ensemble of decision trees (hence the term 
forest). An ensemble approach allows more robust estimates 
that are less prone to “over-learning.” The size of the “forest” 
ensemble was estimated by examining the estimated error as a 
function of the ensemble size.39,40 In this study, the error rate 
plateaued at an ensemble size of approximately 30 trees. Thus, 
an ensemble of 50 decision trees was used in our random forest. 
Random forests provide an objective way of highlighting the 
most important predictors and providing a ranking of the rela-
tive importance of each predictor. To measure the variable’s 
importance, we first fit a random forest to the training dataset. 
This provided us with the so-called out-of-bag (OOB) error. If 
we want the importance of a specific variable Xi (Xi is the ith 
predictor), the value Xi will be permuted and the OOB error 
will be computed again for the permuted data, and the impor-
tance of Xi will be the average of the difference between the 
OOB errors before and after all trees.41,42

Hybrid approach
In this study, a hybrid approach was used, and it utilized 2 
types of machine learning. First, unsupervised classification 
(SOM) was used to group the PM2.5 seasonal cycles into 
classes. Each class contained geographic locations which have 
seasonal cycles of a very similar shape. Second, we went 
through each of 6 typical classes sequentially and used a ran-
dom forest to objectively rank which variables are most 
important in distinguishing that class from all the other 
classes, that is, which environmental factors were the most 
important for characterizing the shape of the PM2.5 seasonal 
cycle for that class (region).

Methods
This study focused on the annual cycles of PM2.5 abundance. 
Our area of interest is East Asia, and there is a total of 113 201 
grid points in this area, as a 10 km × 10 km resolution. To plot 
an annual cycle of PM2.5 abundance for each location, a set of 
10-day averages were taken (the first average is the first 10 days 

of the month, the second average is the second 10 days of the 
month, and the remaining days of the month constitute the 
third average), which means that there are 3 average values in a 
month (36 values in 1 year). Thereafter, the average was taken 
over 9 years (September 1, 2004, to August 31, 2013) to get the 
final average annual cycle. However, it is not every location in 
this area that has readily available data. The Pacific Ocean cov-
ers a substantial part of the East Asian region, and ocean loca-
tions were not included in our analysis. Some locations over 
land can also have partial data with gaps due to cloud cover. 
After removing these locations, 48 186 locations remained with 
valid annual cycles.

The SOM was used to classify the shapes of annual cycles 
into 100 classes. The experiment was conducted using different 
numbers of classes between 90 and 200. Repeated classifica-
tions were also tested; each neural network using the same data 
will not be identical for each repeated training as the gains and 
weights of the neural network are initialized using random 
numbers. The classification with 100 classes turned out to be 
stable over repeated classifications; it assigned all the locations 
with a similar seasonal cycle to a single class. Classifications 
using less than 100 classes could not separate visibly different 
cycles. Using more than 100 classes did not provide any addi-
tional clarity.

In the analysis presented here, 6 classes were picked out of 
100 classes as illustrative examples: class 19, class 20, and class 21 
are 3 continuous classes covering the Sichuan Basin in China; 
class 66, class 71, and class 94 are 3 other typical classes with very 
different temporal distributions. Class 66 represents the area 
around Beijing, class 71 represents the central China area, and 
class 94 represents South Korea and part of Japan. For each of 
these 6 classes, machine learning was used to find which of the 
84 meteorological and environmental factors are key in distin-
guishing that class from all other classes. These 6 classes cover a 
total of 1662 locations. The same method was used with the 84 
variables as for the PM2.5 abundance: a 10-day average was taken 
(36 values in 1 year), followed by a 9-year average. Thus, there are 
84 annual cycles of 84 variables for each location. By applying 
random forests, the importance of all 84 variables can be ranked 
so as to distinguish a given class from all other classes. The vari-
able importance ranking provided by the random forest is useful 
for gaining insights into the key environmental drivers that go 
into shaping the seasonal cycle.

Results and Discussion
The outcome of SOM is shown in Figure 2, 100 classes are 
represented by different colors, locations in the same class are 
shown in the same color. Figure 3A shows the average PM2.5 
abundance in the Sichuan basin. The inner basin area (class 19) 
has the highest average PM2.5 abundance, which implies that 
this region is the most polluted. Pollution in the mid-basin 
(class 20) is a little less, and the outer basin (class 21) has the 
least abundance of PM2.5. The average regional graph (Figure 
3B) showing the probability distribution gives the same result. 
Class 19 represents the urban area (it includes the 2 big cities in 
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Sichuan basin: Chengdu and Chongqing). It is clear that the 
urban areas have the highest abundance of PM2.5 because they 
have the major sources of PM2.5. These high concentrations are 
transported to the rural areas surrounding the cities. As this 
transport occurs, the PM2.5 abundance decreases due to dilution: 
as a result of mixing with less polluted air during the transpor-
tation. The cities have a higher PM2.5 abundance than the sur-
rounding countryside. The annual cycles of these 3 classes are 
relatively stable throughout the entire year. The topography of 
the basin shows that it is a rather isolated area, and the interac-
tion of surface air in the basin with the surroundings is weak.43

Figure 4 shows the PM2.5 annual cycle classification map for 
East Asia, with a focus on the Sichuan basin. Areas where these 
annual cycle peaks can be slightly different are noted. For 
example, the annual cycle for the inner basin area (Figure 4C) 
records a peak in January. The annual cycle for the outer basin 
(Figure 4D) peaks at the end of December, whereas in the 

mid-basin area (Figure 4E), there are peaks in both December 
(like the outer basin) and January (like the inner basin).

Figure 5 classifies the shapes of the PM2.5 annual cycles with 
a focus on the other 3 classes. In the central China area (Figure 
5B), the main peak of the PM2.5 annual cycle is in February, with 
a smaller secondary peak in January. For the Beijing area (Figure 
5C), there are 2 peaks, one in February and the other in August. 
In their study, Xu et al44 and Chan and Yao45 pointed out that 
this area is a heavy industrial base in China, and the amount of 
emissions increases in winter and spring. These emissions 
include the combustion of coal for the heating of homes and the 
increasing emission of vehicles as a result of the low temperature. 
These factors increase the concentration of PM2.5 and its precur-
sors: sulfur dioxide, nitrogen oxides, and volatile organic com-
pounds.7 In addition, the local weather in winter weakens the 
diffusion of PM2.5. Sandstorms in northern China cause the 
minor peak in spring.46 For South Korea (Figure 5D), PM2.5 has 

Figure 2. Graphs of the 100 classification class numbers are plotted with the latitude and longitude from source locations. All locations in the same class 
are shown in the same color.

Figure 3. Comparisons among the PM2.5 abundance in the 3 continuous classes: class19 (inner basin), class 20 (mid-basin), and class 21 (outer basin). 
(A) The average abundance in these 3 classes; (B) the probability distribution of PM2.5.
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Figure 4. Classification map for the PM2.5 annual cycle over East Asia (A), zooms into the Sichuan Basin (B). The shape of the PM2.5  annual cycles 
(shown as polar diagrams) in the Sichuan Basin naturally fall into three regions: inner basin (C,F), mid basin (D, G), and outer basin (E, H).

Figure 5. PM2.5 annual cycle classification map over East Asia (A) with a focus on the area around Beijing (class 66), central China area (class 71), and 
South Korea (class 94). (B, C, and D) PM2.5 annual cycles as polar diagrams and locations corresponding to classes 66, 71, and 94.
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lower concentrations throughout the year due to much lower 
emissions than was recorded for China and due to the ocean 
breeze transporting and diluting any elevated PM2.5.

The rankings of variable importance for each of these 
regions provided by random forests are shown in Figure 6. For 
the highly populated inner Sichuan basin (Figure 6A), the top 
predictive factors for distinguishing the shape of the PM2.5 
annual cycle from all other classes are as follows: (1) the energy 
stored in all land reservoirs, which represents the heat content 
of the land (soil, canopy, and snowpack); (2) white sky albedo 
at 858 and 555 nm, which represents the reflectance of surface 
under diffuse solar radiation with wavelengths of 858 and 
555 nm; they are related to the surface reflectivity. Other listed 
factors which play less important roles are related to surface 
reflectivity at other wavelengths, surface temperature and 
height, and water content in land. For the mid-basin area 
(Figure 6B), the top predictive factors are as follows: (1) the 
northward surface wind stress, (2) the energy stored in all land 
reservoirs, and (3) the topography. These factors are related to 
the northward wind, heat content in land, and surface height. 
Other listed factors are related to surface reflectivity, water con-
tent in land, and northward wind. For the outer basin area 
(Figure 6C), the top predictive factors are as follows: (1) the 
topography, (2) the energy stored in all the land reservoirs, and 
(3) the white sky albedo at 670 nm. They are related to the 
surface height, heat content in land, and surface reflectivity at 
670 nm. Other listed factors are related to surface reflectivity, 
water content in land, and northward wind. It can be seen  
by comparing Figure 6A to C that topography plays an 

increasingly important role as one moves from the inner to the 
outer basin due to the increasing gradient of the surface height.

For the area around Beijing (Figure 6D), the key factors deter-
mining the shape of the PM2.5 annual cycle are as follows: (1) the 
topography and (2) the gravity wave surface stress, which means 
the interface between ocean and land, that is, ocean plays an 
important role in the coastal area (eg, ocean breeze). Other listed 
factors are related to surface reflectivity and surface type, eastward 
wind, and heat content in land. For the central China region 
(Figure 6E), the key factors are as follows: (1) the topography and 
(2) the energy stored in all land reservoirs. Other listed factors are 
related to surface reflectivity, eastward wind, heat content of the 
lands, and surface type. For South Korea (Figure 6F), the leaf area 
index plays the most important role and it is a dimensionless 
quantity that characterizes plant canopies. The gravity wave sur-
face stress and the eastward surface wind stress are also important 
factors because this area is near ocean, which plays a significant 
role in determining the morphology of the PM2.5 annual cycle. 
Others listed factors are related to heat content in land, air density 
above the surface, and surface type.

Conclusions and Future Work
Machine learning has done a remarkable job of both classifying 
the morphology of the PM2.5 annual cycle in East Asia and pro-
viding insights into the specific aspects of the physical environ-
ment that are associated with the shape of the PM2.5 annual 
cycle and the timing of the PM2.5 peaks. This study used a 2-step 
machine learning methodology where an unsupervised self-
organizing map was first used to classify the morphology of the 

Figure 6. Top 10 most important meteorological variables of these 6 classes are shown. (A, B, and C) Sichuan Basin (A is inner basin, B is mid-basin, 
and C is outer basin), (D) the area around Beijing, (E) central China area, and (F) South Korea and part of Japan.
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PM2.5 annual cycle into 100 classes. Thereafter, to gain physical 
insight into the key drivers, a separate supervised random forest 
for 6 morphology classes out of 100 was used to rank the relative 
importance of the factors determining the shape of the annual 
cycle for that class. For the 3 classes in Sichuan Basin, the shapes 
of the PM2.5 seasonal cycle are relatively stable, and the key fac-
tors are mostly related to surface type and surface height. The 
shape of the PM2.5 seasonal cycle in the central China area 
records a peak in winter, and the key factors are related to heat 
content in land and surface height. However, the PM2.5 peak was 
recorded in summer in South Korea, and the key drivers are 
related to the ocean effect, plant canopies, and eastward wind. 
For the PM2.5 seasonal cycle in the area around Beijing, the key 
drivers are related to surface type and height, and ocean effect.

Some natural areas for further work include examining 
whether there are seasonal population health outcomes that are 
associated with the peaks of the PM2.5 annual cycle identified 
for various regions.
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