
https://doi.org/10.1177/1178630217699399

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Environmental Health Insights
Volume 11: 1–10
© The Author(s) 2017
Reprints and permissions: 
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1178630217699399

Introduction
Ambrosia (ragweed) pollen with concentrations of 5–20 pollen 
grains per cubic meter is allergenic for many people.1 The 
Ambrosia genus consists of more than 40 species. Of all  
the Ambrosia species, A. artemisiifolia (common ragweed) has 
the highest allergenic potency and can produce millions of 
pollen grains per day. Figure 1 shows the A. artemisiifolia life 
cycle. Figure 1 is plotted based on Solter et al.2 Ragweed typi-
cally blooms and produces large amounts of pollen between 
August and October.

The latest National Health and Nutrition Examination 
Survey (NHANES) III estimates that 26.2% of the US popu-
lation is sensitive to Ambrosia pollen.3 A single plant can release 
about a billion pollen grains in a season.4 Typically, the size of 
a single pollen grain of Ambrosia is between 15 and 25µm.5 
Particles of this size do not typically go deep into the human 
peripheral airways. However, smaller particles with a size of 
less than 10µm can go deep into the peripheral airways.6 
Ambrosia pollen can fragment into smaller particles ranging in 
size from 0.5 to 4.5µm in size.7

Allergic conditions such as asthma and rhinitis can be wors-
ened by pollen. According to the World Health Organization 
(WHO),8 9% of US students younger than 18 experienced sea-
sonal hay fever symptom in 2008; three quarters of these are 
believed to be caused by Ambrosia pollen. Approximately, 50 
million Americans have allergic diseases. On average, each day 
in the USA, 44,000 people have an asthma attack. On average, 
in the USA, asthma causes 36,000 kids to miss school, 27,000 
adults to miss work, and 4,700 people to visit the emergency 
room (with 1,200 of these emergency room visits leading to a 
hospital admission) each day. Unfortunately, on average, nine of 
those admitted with asthma dies.

Early warning of imminent high pollen levels could be valu-
able for people with conditions such as asthma and chronic 

obstructive pulmonary disease (COPD). However, giving these 
accurate early warnings is a challenging task. The traditional 
approach of measuring the atmospheric pollen abundance with 
a Burkard trap is labor intensive, involving manual counting of 
the number of pollen particles under a microscope. Manual 
counting is also necessary because it has an inbuilt latency, 
often of approximately a week.

In this paper, we show that the pollen abundance can be 
estimated using machine learning and a suite of environmental 
parameters from meteorology and remote sensing. Some previ-
ous studies have used neural networks (NNs) to estimate pol-
len.9–13 In this article we use machine learning to explore the 
relative importance of a variety of environmental factors in 
estimating the airborne abundance of Ambrosia pollen over a 
27-year period in Tulsa, OK.

Previous Work
Howard and Levetin14 measured and analyzed the long-term 
Ambrosia pollen counts observed at the University of Tulsa 
and developed a multi-linear forecasting model to predict the 
next day's pollen concentration. In this model, they associated 
the pollen concentration with the long-term phenology15  
and a set of meteorological factors that included the mini-
mum temperature Tmin , precipitation P, and the mean dew 
point DP:

    ln( ) . . .
. .

C T
P DP PH

min= − − × − ×
+ × + ×
0 505 0 018 0 108

0 013 0 970  (1)

where C is the pollen concentration and PH the phenology. 
The phenology is the mean pollen count for that day of the 
year for all prior years of Ambrosia pollen observations in 
Tulsa, OK.
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The accuracy of this multi-linear model was examined by 
Howard and Levetin.14 Figure 2 shows a scatter diagram of this 
multi-linear model, where the x-axis shows the estimated pol-
len count and the y-axis the actual observed pollen count. For a 
perfect prediction all the points lie on a straight line with a 
slope of one and an intercept of zero. This figure is used as a 
benchmark for the comparison of results obtained later, using a 
variety of machine learning approaches. In Figure 2 the corre-
lation coefficient is 0.59.

A key point to note is that this multi-linear model shown in 
equation (1) makes use of the phenology (i.e. the observed 
mean pollen count for that day over the 25 years of observa-
tions). In this study we have partnered with Levetin, using the 
same data presented in Howard and Levetin,14 except that here 
we use machine learning instead of multi-linear regression and 
that the phenology was not used as an input variable. Instead our 
goal was to be able to estimate pollen based only on a compre-
hensive environmental context.

The goal of this study was to accurately estimate the pollen 
count in Tulsa, OK, using just the readily available contextual 
information such as meteorological analysis, weather radar, and 
satellite data. In the linear model, it can be observed that the 
phenology item has a much higher weight than the other fac-
tors. Obtaining an accurate phenology for a given location is 
very labor intensive, and is rather expensive as a result. 

In contrast, the contextual meteorological data are readily 
available. The goal of the current study was to show that an 
accurate pollen estimate can be provided from these contextual 
data alone, thereby allowing the possibility of dispensing with 
labor-intensive phenology information.

In this endeavor, a set of machine learning approaches was 
used. As shown below, some perform better than others. Let us 
now examine these machine learning approaches in turn, 

Figure 2. Correlation of the model-predicted pollen concentrations with 
observed validation data for 2013. Plotted based on equation (1), using 
data from Howard and Levetin 14 and Rienecker et al.16

Figure 1. A schematic showing the Ambrosia life cycle.
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starting with the best performing algorithm and finishing with 
the poorest performing algorithm.

Data Sets Used
Two types of data were used in this study. First, observational 
data of the abundance of airborne Ambrosia pollen (e.g. Figure 
3) which was previously reported by Howard and Levetin.14 
Second, a comprehensive meteorological and land surface con-
text for the pollen observations provided by the NASA 
MERRA meteorological reanalysis.16–18

The daily airborne pollen concentration was obtained at the 
University of Tulsa in Tulsa, Oklahoma. During the time 
period of 1986 to 2014, a Burkard Volumetric Spore Trap was 
deployed on the roof of Oliphant Hall, collecting airborne pol-
len day and night. Inside the Burkard trap, the pollen is depos-
ited onto a greased strip of Melenex tape that is affixed to a 
rotating drum. Tapes were collected each week, divided into 
strips for each day, and then examined at a magnification of 
400× for pollen grain identification and counting under a 
microscope. Once the pollen counts were obtained, they were 
multiplied by a conversion factor to yield the overall atmos-
pheric pollen concentration.14

Figure 3 shows the Ambrosia pollen counts at Tulsa, OK, for 
three consecutive years, 1986–1988. We note that for each year, 
the duration of the Ambrosia pollen season is similar, as is the 
timing of the peak pollen counts. The average Ambrosia pollen 
counts at Tulsa, OK, over all 27 years of observation is shown 
in Figure 4. The Ambrosia pollen season starts in August, the 
peak concentrations are reached in September, and then slowly 
decline through October. Figure 4 shows the average time vari-
ation for the 27 years of pollen data.

For every day of the 27 year period from 1987 to 2013, for 
which pollen data were available at Tulsa, OK, the hourly val-
ues of 85 environmental parameters were retrieved from the 
NASA MERRA meteorological analysis that describe the 
surface meteorology and soil state.16 These 85 variables are 
listed in Table 2 of the appendix and comprehensively charac-
terize both the air close to the land surface and the land sur-
face itself. Since the pollen data are only available as daily 
values, three summary statistics were also calculated for each 
of the 85 environmental parameters: the mean, minimum, and 

maximum. According to life experience, weather plays a key 
role in time, concentration, and for how long pollen is released 
by plants. For example, windy dry weather typically leads to 
higher levels of pollen that are rapidly dispersed. When it 
rains, pollen is quickly washed out of the atmosphere. Since 
the plant's likelihood of releasing pollen on any given day is 
naturally affected by that plant's recent history, we also time 
lagged each of the 85 parameters by a delay that varied from 1 
to 30 days. This leads to a total of 85 30 3 7 650× × = ,  variables 
that were used in our machine learning studies. Of these 7,650 
variables, some are not important for estimating the pollen 
count. The machine learning automatically highlighted for us 
which variables are the most significant (Figure 6(c)).

A comparison of three machine learning regression 
approaches to show which performs best in estimating atmos-
pheric pollen abundance was done. A brief overview of each 
approach is provided.

Machine Learning
Machine learning is an automated implementation of the sci-
entific method,19 following the same process of generating, 
testing, and discarding or refining hypotheses. While a scientist 

Figure 3. Annual pollen data through 1986 to 1988.

Figure 4. Averaged 1986–2014 annual pollen data.
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may spend his or her entire career coming up with and testing 
a few hundred hypotheses, a machine-learning system can do 
the same in a fraction of a second. Machine learning provides 
an objective set of tools for automating discovery. It is therefore 
no surprise that machine learning revolutionizing many areas 
of science, technology and business.20

For each machine learning approach we used, the perfor-
mance was quantified using a scatter diagram. In the scatter 
diagram the actual observations were plotted against the current 
study machine learning estimates. A perfect scatter diagram is a 
straight line with a slope of one and an intercept of zero. In each 
case, the data were randomly split into two independent sam-
ples; one sample was used for training and the second sample 
for an independent validation, that is, the validation data were 
not used in the training stage of the algorithms. Table 1 shows 
the correlation coefficients for the various machine learning 
approaches used in this study. The best performing approach, 
namely the random forest, is listed first. Here RT  is the correla-
tion coefficient for the training dataset and RV  is the correla-
tion coefficient for the totally independent validation dataset.

Random forest
A random forest is an ensemble statistical learning approach, 
consisting of an ensemble of decision trees.21–23 A schematic rep-
resentation of a random forest is shown in Figure 5. Random for-
ests have proved to be a very useful multi-variable, non-linear, 
non-parametric approach for both regression and supervised 
classification. Ensemble methods are less prone to over-learning 
the noise of the data and typically provide better generalization. 
A random forest also provides a useful ranking of the relative 
importance of the predictors, an example of which is shown in 
Figure 6(c) for estimating pollen abundance. To decide how many 
trees we should use in our random forest, we examined how the 
error decreased as the number of trees is increased (Figure 6(e)).

A random forest can facilitate estimation of the pollen 
count as a multi-variate, non-parametric function of N input 
variables, i.e.

    pollen count f x xRandom Forest N= …( , , )1  (2)
where x xN1, ,!  are the N readily available environmental 
parameters (listed in the appendix).

Two enhancements were then made for a standard random 
forest implementation that allowed both improvement of the 
performance and provided an estimated error for each pollen 
count that is estimated. The enhancement was inspired by 
Newton–Raphson iteration.

A series of iterations were executed, for each iteration, a ran-
dom forest was used to estimate the pollen count as indicated 
in equation (2). Then, the estimated pollen count was com-
pared with the actual pollen count to calculate an error, that is:

          error observation estimation= −  (3)

Next, an additional random forest was used to learn this 
error. After each iteration, the random forest estimate of the 
pollen count was then corrected using the error estimated by 
this additional random forest, that is, by rearranging equation 
(3) and replacing the observation by our random forest esti-
mate of the pollen count, and by replacing the error with the 
estimated error provided by the second random forest:

 improved estimation initial estimation
estimated error
= +  (4)

This was then repeated for a set of n iterations (we used n = 
10). After each iteration, the estimated pollen count, and esti-
mated pollen count error were added as additional input vari-
ables for the next iteration. This considerably improved the 
reliability of our estimated pollen count as can be seen by com-
paring verification scatter diagrams in Figure 6(a) and (b). In 
these scatter diagrams, the x-axis shows the observed amount 
of pollen and the y-axis shows the estimated amount of pollen. 
The error bars show the estimated uncertainty. As shown, these 
estimates do not require the phenology to be specified, yet 
show a substantial improvement in a prior study shown in 
Figure 2. Figure 2(a) shows the scatter diagram for the first 
iteration and Figure 2(b) shows the much improved scatter dia-
gram after the last iteration. The approach offers very good 
performance. Interestingly, when the pollen estimations were 
tested using a completely independent data sample not used in 
the training (the validation dataset), the correlation coefficient 
is actually even better than that for the training dataset. These 
scatter diagrams show the remarkable ability of the iterative ran-
dom forest approach to accurately estimate the airborne pollen count.

Figure 6(c) shows the relative importance of the 20 most 
important variables for estimating pollen count. The random 
forest indicated that the five most important parameters in esti-
mating the pollen count are: the vegetation greenness 26 days 
prior, the current surface roughness length for sensible heat, the 
displacement height 15 days prior, the energy stored in all land 
reservoirs 30 days prior, and the current surface humidity.

Table 1. Correlation coefficients for the various machine learning 
approaches used in this study, with the best performing approach 
listed first. Here RT  is the correlation coefficient for the training dataset 
and RV  is the correlation coefficient for the totally independent 
validation dataset.

MACHINE LEARNING 
APPROACH WITHOUT 
PHENOLOGY

CORRELATION COEFFICIENT

TRAINING, RT VALIDATION, RV 

Random forest 1 0.98

NN 0.91 0.61

LASSO 0.53 0.56

Prior multi-linear study with 
phenology

0.68  
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Figure 5. Schematic of a random forest. A random forest is an ensemble of decision trees.

Figure 6. Descriptions for the random forest result. (a), (b) Verification scatter diagrams, with the x-axis showing the observed amount of pollen and the 
y-axis showing the estimated amount of pollen, while the error bars show the estimated uncertainty. We note that these estimates do not require the 
phenology to be specified. In (a) we show the scatter diagram for the first iteration and in (b) we show the much improved scatter diagram after the last 
iteration. (c) The relative importance of the 20 most important variables for estimating the pollen count. (d) Histogram of the residuals between the 
observed and estimated pollen counts. (e) Variation of the error as a function of the number of trees in the random forest. (f) The correlation coefficient for 
the training and independent validation datasets as a function of iteration.
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For air flows over the ground, when the scale of the land sur-
face irregularities is much greater than the viscous scale, then a 
high surface roughness causes a local equilibrium breakdown by 
momentum transfer due to local pressure gradients at a height 
comparable with the vertical dimension of the surface irregulari-
ties, thereby affecting the boundary scale roughness length, z0
.24 The random forest highlighted this phenomenon, indicating 
that the current surface roughness length for sensible heat (sen-
sible heat is related to changes in temperature with no change in 
phase) and the displacement height 15 days prior were both sig-
nificant factors in estimating the pollen count.

Figure 2(d) shows a histogram of the residuals between the 
observed and estimated pollen counts.

Figure 2(e) shows how the error varies as a function of the 
number of trees in the random forest. It is obvious that, the error 
approaches a constant after the number of trees reaching 20. 
Thus, number of tree estimators should be larger than 20 for 
good performance of regression. It was set to 50 in this article.

Figure 2(f ) shows the correlation coefficient for the train-
ing and independent validation datasets as a function of itera-
tion. The training data error approaches a constant after four 
iterations. So iterations was set to 10 (i.e. more than four) in 
this article.

Neural Network
NNs are non-linear, non-parametric learning algorithms 
inspired by biological networks such as those found in the 
human brain.25–27 NNs are capable of approximating non-lin-
ear functions by the adaptive adjustment of their weights using 
a training algorithm. Figure 7 shows a schematic of a single 

hidden layer, feed-forward NN. Each arrow corresponds to a 
real-valued parameter, or a weight, of the network. The values 
of these parameters are tuned in the network training (b are the 
biases, w are the weights, and σ is the activation function). 
Associated with each node interconnection is a weight and a 
bias. These weights start as random numbers and during the 
process of training, they are iteratively updated.

Figure 8 shows the neural network scatter diagram. The 
validation correlation coefficient, RV = 0 61. , is not as good as 
that for the random forest.

LASSO Method
The Least Absolute Shrinkage and Selection Operator (LASSO) 
is a linear regression method that involves both variable selection 

Figure 7. Schematic of a single hidden layer, feed-forward NN. Each arrow corresponds to a real-valued parameter, or a weight, of the network. The 
values of these parameters are tuned in the network training. Here b are the biases, w are the weights, and σ is the activation function.

Figure 8. Scatter diagram for the airborne pollen estimates made using 
a NN.
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and regularization.28 The main benefit of using the LASSO 
approach is that it highlights the most important subset of 
parameters that can best describe the pollen concentration. The 
LASSO approach is similar to Pearson correlation analysis that 
is often used with classic linear regression models. The LASSO 
approach uses only a subset of the original predictors.

Figure 9 shows a scatter diagram for the LASSO pollen 
estimate. The x-axis shows the observed pollen amount and 
the y-axis shows the LASSO estimated pollen amount. The 
blue circles depict the training dataset, which has a correlation 
coefficient, RT = 0 53. . The red squares depict the independ-
ent validation dataset, which has a correlation coefficient, 
RV = 0 56. .

Conclusion
In this article, a new Ambrosia pollen estimation model for 
Tulsa, OK, has been developed. The pollen concentration 
was described as a non-linear multi-variate function of the 
input variables, where the multi-variate function is provided 
by three different machine learning algorithms: LASSO, 
NNs, and random forests. The input environmental param-
eters are readily available from the NASA MERRA mete-
orological and land surface analysis. The random forest 
performed the best, and also provided insight into the rela-
tive importance of the 85 input variables. The most impor-
tant input variables were vegetation greenness, displacement 
height, roughness length of sensible heat, soil evaporation, and 
energy stored in all reservoirs.

In future studies we will be exploring the additional infor-
mation that can be provided by LANDSAT and weather radar. 
LANDSAT provides the surface reflectivity in multiple wave-
lengths. When ragweed blooms there will be a change in the 
surface reflectivity over multiple wavelengths. Weather radar 
detects airborne particles such as precipitation. The radar signal 
is also reflected by other particles such as smoke, pollen, and 
even insects.
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Appendix: Full List of the Environmental Variables Used
Table 2. Variable names, abbreviations and units.

VARIABLE DESCRIPTION UNITS

EFLUX latent heat flux(positive upward) W m 2⋅ −

EVAP Surface evaporation kg m s2 1⋅ ⋅− −

HFLUX Sensible heat flux (positive upward) W m 2⋅ −

TAUX Eastward Surface wind stress N m 2⋅ −

TAUY Northward Surface wind stress N m 2⋅ −

TAUGWX Eastward gravity wave surface stress N m 2⋅ −

TAUGWY Northward gravity wave surface stress N m 2⋅ −

PBLH Planetary boundary layer height m

DISPH Displacement height m

BSTAR Surface buoyancy scale m s 1⋅ −

USTAR Surface velocity scale m s 1⋅ −

TSTAR Surface temperature scale K

QSTAR Surface humidity scale kg

RI Surface Richardson number non-dimensional

ZOH Roughness length, sensible heat m

ZOM Roughness length, momentum m

HLML Height of center of lowest model layer m

TLML Temperature of lowest model layer m

QLML Specific humidity of lowest model layer kg

ULML Eastward wind of lowest model layer m s 1⋅ −

VLML Northward wind of lowest model layer m s 1⋅ −

RHOA Surface air density kg m 3⋅ −

SPEED Three-dimensional wind speed for surface fluxes m s 1⋅ −

CDH Surface exchange coefficient for heat kg m s2 1⋅ ⋅− −

CDQ Surface exchange coefficient for moisture kg m s2 1⋅ ⋅− −

CDM Surface exchange coefficient for momentum kg m s2 1⋅ ⋅− −

CN Surface neutral drag coefficient non-dimensional

TSH Effective turbulence skin temperature K

QSH Effective turbulence skin humidity kg

FRSEAICE Fraction of sea-ice Fraction

PRECANV Surface precipitation flux from anvils kg m s2 1⋅ ⋅− −

PRECCON Surface precipitation flux from convection kg m s2 1⋅ ⋅− −

PRECLSC Surface precipitation flux from large-scale kg m s2 1⋅ ⋅− −
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VARIABLE DESCRIPTION UNITS

PRECSNO Surface snowfall flux kg m s2 1⋅ ⋅− −

PRECTOT Total surface precipitation flux kg m s2 1⋅ ⋅− −

PGENTOT Total generation of precipitation kg m s2 1⋅ ⋅− −

PREVTOT Total re-evaporation of precipitation kg m s2 1⋅ ⋅− −

GRN Vegetation greenness fraction Fraction

LAI Leaf area index m2

GWETROOT Root zone soil wetness fraction

GWETTOP Top soil layer wetness fraction

TPSNOW Top snow layer temperature K

TUNST Surface temperature of unsaturated zone K

TSAT Surface temperature of saturated zone K

TWLT Surface temperature of wilted zone K

PRECSNO Surface snowfall kg m s2 1⋅ ⋅− −

PRECTOT Total surface precipitation kg m s2 1⋅ ⋅− −

SNOMAS Snow mass kg m 2⋅ −

SNODP Snow depth m

EVPSOIL Bare soil evaporation W m 2⋅ −

EVPTRNS Transpiration W m 2⋅ −

EVPINTR Interception loss W m 2⋅ −

EVPSBLN Sublimation W m 2⋅ −

RUNOFF Overland runoff kg m s2 1⋅ ⋅− −

BASEFLOW Baseflow kg m s2 1⋅ ⋅− −

SMLAND Snowmelt kg m s2 1⋅ ⋅− −

FRUNST Fractional unsaturated area fraction

FRSAT Fractional saturated area fraction

FRSNO Fractional snow-covered area fraction

FRWLT Fractional wilting area fraction

PARDF Surface downward PAR diffuse flux W m 2⋅ −

PARDR Surface downward PAR beam flux W m 2⋅ −

SHLAND Sensible heat flux from land W m 2⋅ −

LHLAND Latent heat flux from land W m 2⋅ −

EVLAND Evaporation from land kg m s2 1⋅ ⋅− −

LWLAND Net downward longwave flux over land W m 2⋅ −

Table 2. (Continued)

(Continued)
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VARIABLE DESCRIPTION UNITS

SWLAND Net downward shortwave flux over land W m 2⋅ −

GHLAND Downward heat flux at base of top soil layer W m 2⋅ −

TWLAND Total water store in land reservoirs kg m 2⋅ −

TELAND Energy store in all land reservoirs J m 2⋅ −

WCHANGE Total land water change per unit time kg m s2 1⋅ ⋅− −

ECHANGE Total land energy change per unit time W m 2⋅ −

SPLAND Spurious land energy source W m 2⋅ −

SPWATR Spurious land water source kg m s2 1⋅ ⋅− −

SPSNOW Spurious snow source kg m s2 1⋅ ⋅− −

PM2.5 Airborne Particulate µ −g m 3⋅

Soil Soil type non-dimensional

Lithology Lithology non-dimensional

Topography Topography m

PopulationDensity Population density  

Type Surface type non-dimensional

AlbedoWSABand1 Surface reflectivity at 470 nm non-dimensional

AlbedoWSABand2 Surface reflectivity at 555 nm non-dimensional

AlbedoWSABand3 Surface reflectivity at 670 nm non-dimensional

AlbedoWSABand4 Surface reflectivity at 858 nm non-dimensional

AlbedoWSABand5 Surface reflectivity at 1,240 nm non-dimensional

AlbedoWSABand6 Surface reflectivity at 1,640 nm non-dimensional

AlbedoWSABand7 Surface reflectivity at 2,130 nm non-dimensional

Table 2. (Continued)


