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Hyperspectral cameras sample many different spectral bands at each pixel, enabling advanced detection and
classification algorithms. However, their limited spatial resolution and the need to measure the camera motion to
create hyperspectral images makes them unsuitable for nonsmooth moving platforms such as unmanned aerial
vehicles (UAVs). We present a procedure to build hyperspectral images from line sensor data without camera
motion information or extraneous sensors. Our approach relies on an accompanying conventional camera to
exploit the homographies between images for mosaic construction. We provide experimental results from a
low-altitude UAV, achieving high-resolution spectroscopy with our system. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

While digital cameras are useful as airborne sensors for
terrestrial surveying, the spectral information contained in
their images is limited to a few broad bands, typically one
for grayscale imaging or three-color imaging. Multispectral
cameras partially overcome this limitation, but they are also
restricted in the quantity and breadth of the frequency bands
they make available per picture element. In contrast, hyper-
spectral cameras provide potentially hundreds of different
spectral bands per pixel. Since the 1970s, when field mea-
surements were made supporting the analysis of Landsat-1
observations, imaging spectroscopy via hyperspectral cam-
eras has steadily progressed (Goetz, 2009).

There have been many applications of hyperspectral
sensors in imaging of land, ocean, and atmospheric com-
position. In precision farming, it is possible to model the
response of plants to factors such as drought, disease, or
pollution by analyzing the reflectance and absorption of
specific spectral wavelengths (Smith, Steven, & Colls, 2004).
There have also been successful studies of mineral identi-
fication by processing hyperspectral data from instruments
such as the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) (Kruse, Boardman, & Huntington, 2003). Oil
spills such as the Deepwater Horizon incident of 2010 can
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also be precisely delimited by spectroscopy (Sidike, Khan,
Alam, & Bhuiyan, 2012). There have been attempts at char-
acterizing human skin from hyperspectral data to get an
accurate identification of pedestrians, setting a precedent
for surveillance or search-and-rescue applications (Herweg,
Kerekes, & Eismann, 2012).

To enable imaging at hundreds of distinct frequency
bands, the optics of hyperspectral sensors are significantly
different from a typical digital camera. Hyperspectral cam-
eras are typically line-scanning and record the spectrum at
all channels corresponding to a single image line in space.
An example of a hyperspectral image is seen in Figure 1.
Given the narrow collimation slit of the optics, a single
hyperspectral image is often of limited use since it has a
very small field of view in one direction. Hyperspectral sen-
sor technology has progressed toward solutions that allow
two-dimensional (2D) frame capture, where each pixel has
an associated set of frequency responses. Recent develop-
ments, such as the Fabry-Pérot interferometer camera, have
the potential to replace line-scanning cameras (Honkavaara
et al., 2013). However, the line-scan variety is reliable, com-
mercially available, has no moving parts, and remains the
lowest in cost and complexity (Vagni, 2007). Line-scan hy-
perspectral cameras typically have finer spectral resolution
than their full-frame counterparts, and generally cover a
wider spectrum in each capture. Therefore, line-scan cam-
eras still address the widest range of useful data analysis
and applications.
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Figure 1. Comparison of a hyperspectral image line with a section of a visible light, conventional camera image. The cameras are
positioned side by side, and the dashed line corresponds to the line captured by the hyperspectral camera.

If the hyperspectral camera is moved at a precise speed
orthogonal to the scan line and consistent with the camera
frame rate, the scan lines can be compiled and processed
into a single image. Ideally, the imaging line moves one
pixel per sample time in a direction perpendicular to the
line, and the collected data are a proper image. Therefore,
this is often referred to as “pushbroom imaging” and “push-
broom camera.”1 Typically, interpolation is performed to
compensate for imprecise motion. This approach generallyQ4
requires high altitude aircraft or Earth-orbiting instruments.
Relevant examples with aircraft include that in Asmat,
Milton, & Atkinson (2011), which imaged 32 spectral bands
over farmland from an aircraft flying steadily at 1,900 m,
and that in Schechner & Nayar (2002), which involved a
camera imaging 21 spectral bands, moving precisely in a
controlled lab environment. An example of a pushbroom
hyperspectral camera not mounted on aircraft is presented
in Monteiro, Minekawa, Kosugi, Akazawa, & Oda (2007), in
which a crane was used as a platform to mount the sensor. In
all cases, the pushbroom camera must be moved smoothly
and at a constant speed.

There are many advantages to using unmanned aerial
vehicles (UAVs) in place of or in conjunction with satel-
lites. Due to their low flight altitude, better resolution can
be achieved from the instruments they carry in terms of the
number of “pixels on target.” Data capture for a given area

1While we present a method to generate hyperspectral images
while not sweeping in a straight line, we will maintain the common
convention of calling such cameras “pushbroom” cameras.

can be scheduled on demand, and the cost of the whole
platform is considerably lower when compared with larger
aircraft or Earth-orbiting equipment. The payload is also
easily changed or upgraded according to application de-
mands. However, using a line-scan sensor to perform push-
broom imaging on a non-smoothly-moving platform such
as a UAV is a nontrivial task, given the difficulty of recover-
ing the exact motion of the camera over time. There are dif-
ferent classes of UAVs, the main two being helicopters and
airplanes. The helicopter class, including multirotor UAVs,
is the most challenging for pushbroom imaging due to the
fact that they have to tilt in order to move. They are also
subject to vibration from their motors. Airplane UAVs can
achieve steadier flight, but those with smaller wingspans
are more prone to suffer from disturbances such as
wind.

The precision and accuracy of localization sensors
needs to be higher for a small UAV, since it is subjected to
abrupt motions from internal and external sources, with an
associated increase in cost. Spectroscopy has been achieved
on these platforms by fusing inertial measurements and
data from the global positioning system (Hruska, Mitchell,
Anderson, & Glenn, 2012; Lucieer, Malenovskỳ, Veness, &
Wallace, 2014; Zarco-Tejada, González-Dugo, & Berni, 2012).
In each of these works, the main problem is the level of ac-
curacy of the inertial sensors of the UAVs. A workaround
for this limitation is to complement the onboard sensor
data with ground control points captured by a camera
and to apply computer vision techniques to match pixels
across images (Turner, Lucieer, & Watson, 2012). This is a
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successful way to georeference data from frame imagers,
but it does not apply to line-scanning sensors.

We propose a novel approach to enable a pushbroom
hyperspectral camera to be used from a UAV, despite the
aforementioned challenges. Furthermore, we do not require
the addition of inertial sensors or external measurements
of the camera pose. This is accomplished by using a con-
ventional digital camera2 rigidly attached close to the hy-
perspectral camera to provide additional information with
which to build the hyperspectral image.

We focus on computer vision techniques, providing a
direct map between the hyperspectral scanlines and the
conventional camera images. With conventional cameras,
it is possible to stitch together different views of a scene
by means of the image homography. This process is typi-
cally called image mosaicing (Caballero, Merino, Ferruz, &
Ollero, 2009; Szeliski, 1996). Computation of the homogra-
phy requires point correspondences from two views of a
planar object or scene and relates point projections in both
camera views. The homography contains information about
the rotation and translation of one camera view relative
to the other, and by exploiting this our approach builds
a hyperspectral image from a collection of hyperspectral
lines mapped to a mosaic created from conventional cam-
era images. Recent work focused on correlation-based align-
ment of pushbroom camera images (Moroni, Dacquino, &
Cenedese, 2012). The ability of such a technique to cope
with perspective transformations is limited, so its perfor-
mance would be compromised in the presence of pitch or
roll motions from the aircraft. As we show in the results,
our approach can deal with a wide set of camera motions.

The work presented herein is an extension of that of
Ramirez-Paredes, Lary, & Gans (2013), in which the con-
cepts of this paper were introduced, accompanied by ex-
perimental results retrieved by hand-held operation of the
sensor array. This paper presents new results from the
use of a low-altitude UAV in conjunction with the sen-
sor array to capture long image sequences exceeding 200
frames.

The rest of this paper is organized as follows: Section 2
explains how the intrinsic parameters of the hyperspectral
camera are computed. Section 3 deals with the necessary
aspects of designing a rig to mount the hyperspectral and
conventional cameras, detailing restrictions on positioning
the cameras and the method for aligning them. Section 4
explains how to map the pixels captured by the hyper-
spectral camera to their corresponding line in the conven-
tional camera frame. Section 5 describes the construction
of an image mosaic for the conventional camera and lever-
aging that mosaic, along with the results of the previous

2By “conventional digital camera” we mean a two-dimensional
sensor with a rectangular grid as its image plane, where each ele-
ment is sensitive to light in a broad band of frequencies hundreds
of nanometers wide.

sections, to obtain a hyperspectral image. Experimental re-
sults are shown in Section 6, followed by a discussion in
Section 7.

2. HYPERSPECTRAL CAMERA GEOMETRIC
CALIBRATION

The typical approach to geometrically calibrate line sen-
sors, such as hyperspectral cameras, is to attach them to
a mechanical platform able to perform precise movements
in a direction perpendicular to the scan line (Draréni, Roy,
& Sturm, 2011; Gupta & Hartley, 1997). If the line sensor
moves at a constant speed while imaging a known calibra-
tion target, stacking the image lines results in a full image.
With this approach, the calibration procedure is similar to
conventional camera techniques.

Our approach to geometrical calibration is mathemat-
ically similar to that in Gupta & Hartley (1997). However,
their calibration method requires a moving camera (or a
moving known target) with accurate measurements of ve-
locity. Our method does not require any such motions, so
it simplifies ex situ calibration. We model the hyperspectral
camera as a conventional camera with one row of pixels, and
every pixel is capable of measuring the intensity of several
spectral bands. This approximation simplifies the camera
model, yet it provides precise results.

We perform geometric calibration by capturing images
of a special target. This provides a correspondence between
world points with known coordinates and their projections
on the pushbroom camera scanline, allowing for the recov-
ery of parameters such as the field of view and the principal
point. This same target is also used to align the hyperspec-
tral and conventional cameras in our array, as will be de-
tailed in the next section.

Consider a Cartesian frame Fh attached to the hyper-
spectral camera, with the origin at the camera focal point,
the X axis parallel to the spatial pixels direction, the Y axis
perpendicular to the spatial pixels direction, and the Z axis
aligned with the line going from the focal point to the image
line center and normal to the image line. Another Cartesian
frame Ft is associated with the target. The target has a spe-
cial pattern on the surface, containing a number of high con-
trast features we call control points with known coordinates
in Ft . It is essential that all control points not be collinear
in 3D Cartesian space. For such a configuration there is an
ambiguity, and a certain image of the points can arise from
an infinite number of camera poses. Therefore, we suggest
a target consisting of control points on two intersecting per-
pendicular lines.

In this work, we designed a target consisting of a thin,
rigid, planar plastic sheet approximately 3 mm thick with a
triangular shape. There is an alternating pattern of black and
white bars on two edges that provides easily detectable tran-
sitions in the hyperspectral image, which constitute the con-
trol points. The separation between these points is 30 mm.

Journal of Field Robotics DOI 10.1002/rob
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Figure 2. Left: the geometric calibration target used for the hyperspectral camera. Right: the calibration target along with the
hyperspectral camera. The pyramid (Ch) represents the hyperspectral camera as in the pinhole model, with its scan line in red.

The target consists of two pieces of acrylonitrile-butadiede-
styrene (ABS) plastic built from a 3D printer with a resolu-
tion of 0.254 mm. The target frame Ft has its X and Z axes
as the intersecting lines containing the control points. We
assume that the collimation slit of the hyperspectral cam-
era is aligned with the pixel rows of its imaging sensor. If
the target is currently aligned with the slit, the dark and
white bands can detected in the hyperspectral image and
the control points extracted.

The calibration target is shown in Figure 2, along with a
diagram of the hyperspectral camera and the control points
on a target. Any rotation of the target along the X or Y axes
with respect to Fh will result in one or more control points
not being projected into the scan line. Figure 3 simulates the
difference between a correctly aligned target and a rotated
one. A rotation of 1 degree on both the X and Y axes of
Fh is shown. When the hyperspectral camera and the target
are properly aligned, the projected control points (crosses)
lie on the camera line, and they can all be detected. The
rotations cause the projected points (squares) to fall outside
of this line, making them not detectable.

Let us assume that no points are outside of the XZ

plane of Fh, since they could not be imaged otherwise. For
simplicity, and without loss of generality, assume the target
frame Ft is the world/inertial frame Fw . The homogeneous
coordinates of a point in Fw are M = [X 0 Z 1]T , and the
homogeneous transformation from the world frame to the
Fh camera frame is denoted by T h

w ∈ SE(3) (i.e., the space of
rigid body motions). A projection model from the world to
the hyperspectral camera is given by

λu = K�0T
h
w M. (1)

The projection of the point is λu = λ[u 1]T , with λ being an
unknown scale factor. K is a calibration matrix given by

K =
[
f u0

0 1

]

with f being the horizontal focal length of the camera and
u0 its principal point in the horizontal direction. The matrix
�0 is a projection given by

�0 =
[

1 0 0 0
0 0 1 0

]
.

Following the developments for conventional cameras, it is
possible to adapt the direct linear transform (DLT) (Abdel-
Aziz, 1971) approach to the pushbroom camera. Just as the
original DLT inverts a map P2 : P

3 → P
2, the pushbroom

case requires an inversion of a map P1 : P
2 → P. Choosing

the control points of the calibration target to be on the same
plane as the hyperspectral camera line and focal point, it is
possible to discard the Y coordinate of the points by setting
it to zero.

As the frames Fw and Fh must have their Y -axes
aligned, the rotation in T h

w must have the form

T h
w =

⎡
⎢⎢⎣

cos θ 0 sin θ tx
0 1 0 0

− sin θ 0 cos θ tz
0 0 0 1

⎤
⎥⎥⎦ ,

where θ is the angle between the X axes of Fh and Fw .
Considering that Y = 0 for every point, let us multiply

�0T
h
w and discard the Y dimension in our computations, as

it does not contribute to the projection. This gives rise to the

Journal of Field Robotics DOI 10.1002/rob
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Figure 3. Calibration target points projected on the hyperspectral camera. Only when the control points lie over the scan line are
they visible to the camera.

simplified projection equation

λu =
[
f u0

0 1

] [
cos θ sin θ tx

− sin θ cos θ tz

] ⎡
⎣X

Z

1

⎤
⎦ = K

[
R t

]
X,

(2)

where R ∈ SO(2) and t ∈ R
2. The intrinsic parameters of the

camera are f and u0 and determine the relationship between
pixel and image plane coordinates. The extrinsic parameters
define the pose of the camera with respect to the known
world frame, Fw . The intrinsic and extrinsic parameters can
be combined to give a camera matrix that has six unknowns
as

λu =
[
a1 a2 a3

a4 a5 a6

] ⎡
⎣X

Z

1

⎤
⎦ = AX. (3)

To cancel the scaling factor λ and rewrite the equations as a
homogeneous linear system, we multiply both sides of Eq.
(3) by uT Q, where Q is a skew-symmetric matrix given by

Q =
[

0 −1
1 0

]
,

thus getting

uT QAX = 0. (4)

Arranging the terms, the resulting equation gives

Xa1 + Za2 + a3 − uXa4 − uZa5 − ua6 = 0.

Stacking equations for five or more point matches between
the control points in Ft and their projection on the hyper-
spectral camera line gives the homogeneous system

⎡
⎢⎢⎢⎣

X1 Z1 1 −u1X1 −u1Z1 −u1

X2 Z2 1 −u2X2 −u2Z2 −u2
...

...
...

...
...

...
Xn Zn 1 −unXn −unZn −un

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1

a2
...
a6

⎤
⎥⎥⎥⎦ = 0. (5)

SAs = 0. (6)

The matrix S can be at most of rank 5, so As can be
solved up to a scale factor by finding the nullspace of the
matrix S. From Eq. (2), we see that a2

4 + a2
5 = 1, so the proper

scale α can be recovered up to a sign ambiguity as

α = ± 1√
a2

4 + a2
5

.

Once the matrix S has been properly scaled, the intrinsic
and extrinsic parameters can be recovered as

u0 = a1a4 + a2a5,

f = [
a2

1 + a2
2 − u2

0

]1/2
.
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Either choice of sign for α results in the same parameters
f and u0. However, the different sign choice leads to two
solutions for R and t. Picking either α, the recovered poses
are

R1 =
[
a5 −a4

a4 a5

]
,

R2 = RT
1 ,

t1 =
[

(a3 − u0a6)/f
a6

]
,

t2 = −t1.

One solution will have a negative value for tz. Since
this would correspond to the control points being behind
the camera, we can discard this translation and consider the
positive tz. Likewise, one rotation would be equivalent to
the camera facing a direction opposite to the target.

We also address the issues of radial distortion and im-
age noise. Radial distortion is a lens-induced phenomenon
that causes deviation from rectilinear projection. It is typ-
ically modeled as a polynomial of even degree, where the
only nonzero coefficients are those of even powers (Brown,
1966; Salvi, Armangué, & Batlle, 2002). For the case of the
pushbroom camera, radial distortion can be modeled as

ud = u + κ1(u − u0)2 + κ2(u − u0)4 + H.O.T . (7)

The distorted point projection is ud , while the projection
predicted by the pinhole model is given by u, and κ1, κ2, . . .

are distortion coefficients. The number of coefficients to use
depends on the degree of precision required. One coeffi-
cient provides acceptable results for our application. The
distortion coefficient can be determined, and the camera pa-
rameters refined, by using convex nonlinear optimization,
with the results obtained from the DLT part of the calibra-
tion as initialization values for the Levenberg-Marquardt
algorithm (Zhang, 2000). Taking m images of the calibration
target and locating the n control points in each, the measure
to be minimized is the point reprojection error,

Jd (up, u′
p, κ1) =

n∑
i=1

m∑
j=1

||uj
i − u

j
i

′||2. (8)

The vector up ∈ R
nm contains the projections of the cali-

bration points as predicted by our model using the hyper-
spectral camera parameters, while u′

p ∈ R
nm are the actual

projections of the calibration points. The point u
j
i represents

the ith point of the j th calibration target image.
Another important procedure related to the hyperspec-

tral camera is the precise determination of its spectral sensi-
tivities. This procedure is known as radiometric calibration.
This type of calibration generally requires measurements of
special light sources for different integration times by the
hyperspectral camera, under precise laboratory conditions
(Zarco-Tejada et al., 2012). A related approach is to use a
field spectroradiometer, which is a calibrated instrument

that measures the reflectance of a particular object under
field conditions (Al-Moustafa, Armitage, & Danson, 2012;
Stratoulias, Balzter, Zlinszky, & Tóth, 2015). The light re-
flectance of the target objects is measured under outdoor
lighting and then compared to the spectral response of the
same targets as seen by the hyperspectral camera. This is
done prior to the data collection flights. Our laboratory is
not equipped to perform the radiometric calibration of the
hyperspectral camera, so we relied on spectral sensitivity
data from the camera manufacturer. This is sufficient to
demonstrate and assess the hyperspectral imagery that our
approach is able to create, but more precise calibration will
need to be performed before application in dedicated stud-
ies of the environment.

3. CAMERA ARRAY ALIGNMENT

Our approach requires an accurate mapping between the
pixels in the pushbroom line and the pixels in the conven-
tional camera. Given the projection of a world point on one
of the cameras, it is generally not possible to predict its pro-
jection on the other camera without knowing the depth of
the point with respect to either of the cameras. However,
under certain alignment conditions, epipolar geometry al-
lows us to predict the line along which that point will be
found (Hartley & Zisserman, 2003). This is a line-to-line map
that generally depends on the depth of the world points
in the camera frames. However, the correspondence can
be uniquely determined if the hyperspectral line coincides
with an epipolar line.

In projective geometry, using the pinhole camera
model, elements of R

3 can be used as homogeneous co-
ordinates to represent both lines and points on the image
plane. For points, the vector p = [u v 1]T represents the co-
ordinates of a point in the image plane; typically this de-
notes the intersection of the image plane and a ray of light
from a 3D point through the focal point of the camera. The
implicit equation for a line au + bv + c = 0 leads to a line
representation l = [a b c]T . A given point p is part of a line
l iff pT l = 0. Thus, the hyperspectral camera line can be
expressed as lh = [0 1 0]T in homogeneous coordinates in
Fh, since only points p = [u 0 1]T belong to it. By our hy-
perspectral camera model in Eq. (1), only points with 3D
homogeneous coordinates X = [X 0 Z 1]T in Fh frame can
have a projection in the hyperspectral image. The projec-
tions of these points to the hyperspectral imaging surface
lie on lh.

Consider the hyperspectral camera focal center Ch and
the conventional camera focal center Cc. The epipole eh is
the point at which the line from Ch to Cc intersects the
line lh. The epipole ec is the point where the line from Cc

to Ch crosses the image plane of the conventional camera.
This is illustrated in Figure 4. By making the epipole eh lie
on lh such that eT

h lh = 0, lh becomes an epipolar line. From
epipolar geometry, it is known that each of the epipolar lines

Journal of Field Robotics DOI 10.1002/rob
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Figure 4. Effect of the world point depth over the projection
of the hyperspectral camera line onto the conventional camera,
with different alignments between cameras. Top: The world
points lie on the same plane and are projected on a line on
the conventional camera, but the position of this line depends
on the point depths. The projections of these points would
be part of a different line if their depths changed. Bottom: The
hyperspectral line is an epipolar line, i.e., ec and lh are coplanar.
The points project over the same line in the conventional camera
regardless of their depth.

in one camera plane has a corresponding epipolar line in
the other. To find the line lc in the conventional image plane
that corresponds to lh, consider a line k in the hyperspectral
camera plane not crossing eh. The point where lh and k
intersect is x = k × lh. Then lc = Ex, where E is the Essential
matrix between both cameras (Huang & Faugeras, 1989).

Any nonzero p ∈ R
3 can represent either a line or a

point in projective geometry, and the line expressed by p is
such that p as a point does not belong to the line. This can
be verified easily since pT p �= 0. We need a line k that will
never go through eh. Thus, the line with coordinates given
by the epipole eh is a good choice for k. Then the epipolar
line in the conventional camera plane corresponding to lh
can be found as

lc = E[eh × lh]. (9)

From the constraints placed on eh, the only translation
between cameras that is allowed is T = [X 0 Z 1]T in the
hyperspectral camera frame. Rotation is only restricted by
the need to have the points within the field of view of the
camera. It is only when the hyperspectral line becomes an
epipolar line that the points projected onto the hyperspectral
camera frame can be found on a corresponding epipolar line
in the conventional camera regardless of the 3D world point
depths.

With the conditions for a line-to-line mapping between
cameras established, the next step is to formulate a way to
align the cameras such that Eq. (9) holds. The calibration
target from Section 2 can be used as an alignment aid. The
alignment procedure we suggest is as follows:

� Affix the hyperspectral camera to the carrying rig.
� Position the calibration target such that every control

point is visible to the hyperspectral camera.
� Translate and rotate the conventional camera until every

control point of the calibration target lies on the same line
in the image plane.

4. HYPERSPECTRAL LINE-TO-IMAGE MAPPING

We propose an optimization task that finds the mapping
between cameras for any scene. With the camera array
aligned as in Section 3, the world points projected onto the
hyperspectral camera line can be found over a single line
in the conventional camera image plane. From Eq. (9), we
know the line-to-line mapping between the hyperspectral
and conventional cameras. However, the data in the hyper-
spectral image are a line segment in lh, which corresponds to
a line segment in lc. While it is known that the world points
projected onto lh are also projected onto lc, the precise map-
ping between line segments is not known if the depth and
orientation of the plane π1 with respect to Fh and Fc are
unknown. Finding a map between line segments involves
finding a scale factor s and displacement d that scale the
length and shift the position of the pixels.

The conventional camera captures grayscale intensity
images, so every pixel performs an integration of the light
intensity over the pass band of the sensor. In the case of the
hyperspectral camera, an intensity image can be approxi-
mated at each spatial pixel by summing the responses at
every frequency band. This allows a comparison between
intensity values from both cameras after they are normal-
ized, even though they may differ by some unknown scalar
factor and offset.

Consider a sequence of n simultaneously captured hy-
perspectral and conventional images. The kth hyperspectral
image can be considered as a real f × c matrix Gk , where
each element gk

i,j corresponds to the ith frequency band and
the j th spatial component. There are f frequency bands, c

spatial components, and k = 1, . . . , n such matrices for an n

Journal of Field Robotics DOI 10.1002/rob
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image sequence. Consider the n × c matrix V, where each
element vk,j is given by

vk,j =
f∑

i=1

gk
i,j . (10)

That is, each row of V is the intensity response of the hy-
perspectral camera in image k. Similarly, consider an n × m

matrix W where the kth row is the pixel values of the line lc
that correspond to the kth lh.

To match each conventional image line segment to the
corresponding hyperspectral line segment, we minimize the
cost function

Jm(d, s, V, W) =
n∑

k=1

∑m
i=1 vk,i · wk,�(i−dk )sk�

||vk||
√∑m

i=1

[
wk,�(i−dk )sk�

]2
. (11)

The vector vk is the kth row of V. The n-element vectors d
and s are the displacements and the scale factors that define
each line correspondence, and their elements are denoted
as dk and sk , respectively. The cost function is based on
the cosine similarity between signals. The locally optimal
scaling and displacement vectors satisfy

{dopt, sopt} = arg mind,sJm(d, s, V, W). (12)

This optimization task is nonlinear in nature, and we
have obtained our best results by applying the Nelder-Mead
algorithm (Nelder & Mead, 1965). For initialization, we es-
timate an initial displacement by using normalized correla-
tion between the scaled hyperspectral lines and their con-
ventional camera equivalents. The initial scaling factor is
the ratio between the conventional camera focal length and
that of the hyperspectral camera.

5. IMAGE REGISTRATION

We have detailed a procedure to obtain a mapping between
the hyperspectral camera data and the images captured by
the conventional camera. These correspondences alone are
not sufficient to create a hyperspectral image of the captured
scene. It is still necessary to recover the motion of the hy-
perspectral camera over time in order to organize the data,
i.e., to properly order and align the line segments imaged
by the hyperspectral camera. To achieve this, we leverage
approaches to combine multiple overlapping images, form-
ing a single depiction of the captured scene from the con-
ventional camera. Forming an image mosaic with the con-
ventional camera images also provides a mapping between
the relative positions of the camera when each image was
captured. This, along with the mapping from points in the
hyperspectral image to the conventional image described in
Section 4, can enable spectroscopy of a given region.

5.1. Correlation-based Matching

One approach to mosaicing that has been applied to form
hyperspectral images is to use correlation to find a simi-
larity transform (Moroni et al., 2012). This approach works
well when the motion of the camera is primarily translation
over the X and/or Y axes. Since it can be a costly opera-
tion, correlation is often replaced with frequency-domain
multiplication via fast Fourier transform.

The correlation between two images can provide infor-
mation about the location of maximum similarity to overlap
two images, but not about the degree of rotation or the dif-
ference in scale between them. To determine these parame-
ters, it is necessary to perform the correlation operation for
multiple Z-axis rotations and/or scalings. This adds to the
computational cost of the operation, but it can provide accu-
rate results for aircraft-mounted cameras following straight
flight paths.

When the straight-path assumption is not satisfied, it
is still possible to find the similarity transform that most
closely matches the subsequent frames. However, as we
show further below, the resulting imagery may not preserve
the geometry of the original scene.

5.2. Feature-based Matching

When the imaged scenes are far away from the camera, we
can approximate every world point as lying on a common
plane. This assumption is of special interest while perform-
ing aerial or satellite photography. The points mapping be-
tween different images of such scenes can be characterized
with a homography, which can then be used to create im-
age mosaics. Let there be a set of 3D points restricted to lie
in a plane π1 ⊂ R

3, and let two cameras capture images of
the points. There exists a homography matrix H ∈ R

3×3 that
relates the projection p1 of each point in the second camera,
p2. This relationship is given by

p2 ∼ Hp1. (13)

The homography matrix between two conventional
camera views can be recovered by the four-point algorithm
from point correspondences (Faugeras & Lustman, 1988;
Ma, Soatto, Košecká, & Sastry, 2004). Coupling the four-
point algorithm with random sample consensus (RANSAC)
delivers an accurate homography matrix solution in the
presence of noise and mismatches (Torr & Zisserman, 1999).
This is useful if the correspondences are obtained using
region features such as scale-invariant feature transform
(SIFT) or speeded-up robust features (SURF). In our ap-
proach, we make use of SURF (Bay, Ess, Tuytelaars, & Van
Gool, 2008). Its performance is comparable to SIFT for the
class of motions considered here, while being computation-
ally less expensive (Bauer, Sunderhauf, & Protzel, 2007).

The number of SURF features per image to retrieve
was not set in advance, but more that 1,000 were extracted
in every frame. A higher number of matches between SURF
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points in different images is not the only factor related to
the quality of the registration. Matching SURF features be-
tween image pairs requires a metric to evaluate the cor-
respondences. The sum of squared differences (SSD) for a
neighborhood of pixels around the candidate points pro-
vide a good indication of the match quality. The SSD can be
coupled with a distance threshold to discard unreasonable
matches, under the standard assumptions of optical flow
for features (constant intensity and smooth motion across
frames).

The quality of the registration is also greatly affected by
the residual error after computing H . The RANSAC algo-
rithm provides a good estimate in the presence of outliers,
even if some incorrect point matches are not properly dis-
carded with the SSD and distance metric. The resulting H

matrix will still need to be refined by the application of
nonlinear optimization (e.g., the Levenberg-Marquardt al-
gorithm) to minimize the reprojection error. At the end of
the optimization, the homography matrix for a single image
pair is obtained.

One approach to construct a mosaic from several im-
ages of a planar scene is to find the homographies for ev-
ery image pair. Then the images are warped to register to
a reference image chosen among them. The problem with
this approach is that errors accumulate, resulting in distor-
tion effects. To avoid this, we use the approach of Shum &
Szeliski (2000). Consider a set of n images I = I1, . . . , In of
a planar scene, with enough overlap and matching feature
pairs to successfully recover the homographies. In image Ik ,
let there be m feature points. The homogeneous coordinates
for the feature points in Ik can be combined to form a matrix
P ∈ R

3×m. Let H denote the set of n2 homographies, with
each element H

j
i being the homography between images Ii

and Ij that satisfies Pj = H
j
i Pi . These relationships can be

exploited in an optimization scheme to reduce registration
errors in building the mosaic. Consider a cost function to
minimize given by

Jh(H, P1, . . . , Pn) =
n∑

i=1

n∑
j=1

||Pj − H
j
i Pi ||2 (14)

with the optimum being the solution to

Hopt = arg min
H

Jh(H, P1, . . . , Pn). (15)

We favor using the feature-based matching approach
since it better preserves the underlying geometry of the
imaged scene. To illustrate this point, consider Figure 5.
It first shows a visible-light orthophoto from the Google
Maps satellite image collection. We highlighted two features
connected by a dashed line, and a rectangle emphasizes a
creek. Note that the rectangle lies mostly to the right of the
dashed line. The two images below compare the position of
these features for the frequency-based and the feature-based
approaches, respectively. The frequency-based mosaic on

Figure 5. Comparison of the relative placement of some scene
features between a reference orthophoto and the image mosaics
from experimental data. The bottom left image is a mosaic built
using frequency-based matching, while the bottom right image
was assembled using feature-based matches. Only the latter
preserves the geometry of the orthophoto.

the left does not preserve the geometry of the orthophoto,
as the dashed line crosses over the creek. The feature-based
mosaic, on the right, does preserve the relationship.

5.3. Hyperspectral Image Assembly

At this stage, there is enough information to construct
the hyperspectral image. Using the line-to-line correspon-
dences described in Section 3 and the scaling factors and
the displacements between the hyperspectral and the con-
ventional camera pixels described in Section 4, the positions
of the hyperspectral camera points projected onto the con-
ventional camera images can be recovered. Using these new
point coordinates for the hyperspectral data and applying
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the homographies from Eq. (15), a single hyperspectral im-
age with all the frequency bands as layers is recovered.

The application of the homographies results in sparse
data consisting of triplets of the form {x, y, F1,...,f }, where
x, y are image coordinates and F1,...,f is the set of all the
intensity values for each of the frequency bands from the
hyperspectral sensor. An interpolation procedure is needed
to obtain a dense data set. The choice of interpolation algo-
rithm is up to the specific application for the images. There
are nonuniform interpolation techniques that can then be
applied to the data, including linear interpolation, inverse
distance weighting, nearest neighbors, kriging, etc. (Oliver
& Webster, 1990; Ruprecht, Nagel, & Müller, 1995). The in-
terpolated result is also known as a data cube.

Qualitatively, the proposed approach results in mo-
saics that better fit orthorectified image databases than
correlation-based approaches. Validating the geometric ac-
curacy generally requires reference orthorectified imagery
to match the hyperspectral image (Laliberte, Winters, &
Rango, 2008) or georeferenced ground control points in-
dicated by reflective markers on a surveyed area (Rocchini
& Di Rita, 2005). It also requires additional data, such as
the external orientation of the aircraft and camera array, the
camera position as determined from GPS points, and a digi-
tal elevation model. This work demonstrated hyperspectral
image creation using only image data, but quantitative anal-
ysis will be performed prior to any application in remote
sensing.

6. RESULTS

We present experiments conducted with a low-altitude
UAV. We employed a Sony XCG-V60E monochrome con-
ventional camera and a custom-made hyperspectral camera
manufactured by Surface Optics, based on the AVT Prosil-
ica GC 655. Both cameras have 640 pixels of horizontal res-
olution. The conventional camera has 480 pixels of verti-
cal resolution, while the hyperspectral vertical information
contains the frequency response in 120 different bands, with
wavelengths covering a range of 400–1,000 nm. The rate of
acquisition for the system is 90 frames per second for both
cameras. Our camera array is mounted on an aluminum
rail, shown in Figure 6. The radiometric calibration of the
sensor was based on manufacturer spectral sensitivity data.

We used a piloted, radio-controlled airplane to perform
the data collection. The plane, pictured in Figure 7, is capa-
ble of carrying a 2.5 kg payload with its electric motor. It
is equipped with a micro-ATX PC and GigE interface to
the cameras. The airplane was flown over a designated RC
field. The imaged area included grassland and ponds for
livestock. The airplane height above ground was set below
100 m, with an average of 60 m, and the wind was blowing
at an average of 30 km/h from the south.

The hyperspectral camera has many applications in
vegetation studies, such as precision agriculture, by as-

Figure 6. Experimental camera array. The hyperspectral cam-
era has a cylindrical shape and it is shown in the middle, with
the smaller conventional camera to its left.

Figure 7. Low-altitude airplane used to carry the camera array.

sessing plant health using narrowband indices. A study
of the application of various narrowband indices for plant
health and stress assessment can be found in Zarco-Tejada
et al. (2005). One useful quantity that can be computed
from hyperspectral data is the Normalized Difference Veg-
etation Index (NDVI) (Tucker, 1979). The NDVI combines
the reflectance of objects to visible and near-infrared light
wavelengths to estimate the vegetation content of a region.
Healthy vegetation absorbs most of the visible light that
reaches it, while reflecting most of the infrared radiation.
Unhealthy or dormant vegetation reflects more visible light
with respect to near-infrared. For each imaged point, the
NDVI is computed as

NDVI = NIR − VIS
NIR + VIS

,

where NIR stands for near-infrared intensity and VIS is the
visible light intensity. The range of values for the NDVI is
[−1, 1], where 1 represents healthy, dense vegetation. Values
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Figure 8. These images show some spectral bands that can be retrieved from the hyperspectral data. From left to right: R670,
related to the chlorophyll absorption in plants; R725, in the edge of the red band; and R800, within the near-infrared.

near 0 may represent concrete, dirt, or otherwise vegetation-
depleted regions, and values near −1 typically correspond
to deep water or clear sky. Let us refer to individual narrow-
band images as Rn, where n is the wavelength of the band.
There are narrowband versions of the NDVI, such as

NDVIn = R774 − R677

R774 + R677
.

A sample of the constructed hyperspectral datacube
can be seen in Figure 8. These are some narrowbands as-
sociated with remote sensing of vegetation: R670 is related
to the chlorophyll absorption of the plants, R725 is the edge
of the red portion of the spectrum and has been associated
with chlorophyll content as well, and R800 is at the beginning
of the near-infrared. The airplane flew a horizontal distance
of 200 m while capturing this particular set of images.

For each image sequence, we show three results. The
first image shows the mosaic assembled from the conven-
tional camera data, with an overlay of the intensity image
derived from the hyperspectral data. This intensity image is
composed by the sum of every hyperspectral channel. The
second image shows the mosaic from the conventional cam-
era with the NDVIn data overlayed. We used a color map
where blue tones correspond to areas with no vegetation
and healthy plants begin to appear as red tones, with dark
red being the most dense and healthy. Finally, the third im-
age is a pseudocolor representation of the scene, on top of
the conventional camera mosaic. To build the pseudocolor
image, we took R700, R550, and R490 to represent the colors
red, green, and blue, respectively.

We selected a few regions of interest from the avail-
able imagery in order to present a variety of objects, as well
as to emphasize some aircraft motions that would make
hyperspectral imaging impossible without the approach
described here. The compiled scenes include grass, water,

trees with and without foliage, bale sheds, fences, dirt roads,
etc. The flights were carried out over the month of Febru-
ary 2014 near Dallas, Texas, at a time of year when most
vegetation was dormant. The first sequence, pictured in
Figure 9, covers a region over a pond approximately 200 m
long. The water had a green hue, as visible in the last image,
but as expected it appeared to have low NDVIn values. Like-
wise, the roof from the shed covered by the hyperspectral
imagery appears in a dark blue hue due to it being highly
reflective in the visible frequency bands but absorptive in
the NIR bands. This fact is also evident from depictions of
the shed in Figure 8, which correspond to the same image
sequence. The amount of detail preserved is notable, con-
sidering the sparseness of the original data and the absence
of pose information of the plane with respect to the scenery.

Figure 10 illustrates a more difficult imaging scenario.
Here the airplane was banking during a turning motion. The
perspective effect is noticeable. A mixture of small ponds
and some trees over mostly dormant grass comprises the
scene. The buildings shown near the top give an indica-
tion of the banking angle of the airplane, and yet the image
mosaic and the hyperspectral image match seamlessly. The
straight-line flight distance for this sequence was 350 m.
A last example is shown in Figure 11. This area included
mostly grass in different health conditions, from dry to
green. The airplane was pushed by a wind gust while com-
pleting a turn, giving rise to the shape shown for the hyper-
spectral data. Even under these motions, there are no severe
mismatches or gaps in the resulting images. The flight dis-
tance for this image set was 150 m.

As can be seen from the results, our approach achieves
a precise alignment between the hyperspectral data and
the conventional camera mosaic. This remains true even
in the presence of large disturbances due to external fac-
tors such as wind gusts or vibrations from the UAV motor.
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Figure 9. Hyperspectral imaging of a rural landscape. Top image: sum of every spectral channel from the HS image, overlaid on
top of the visible camera mosaic. Middle image: Normalized Difference Vegetation Index. Bottom image: pseudocolor from red,
green, and blue channels.

Journal of Field Robotics DOI 10.1002/rob



rob21624 W3G-rob.cls September 19, 2015 18:8

Author Proof

Ramirez-Paredes et al.: Low-Altitude Terrestrial Spectroscopy • 13

Figure 10. Severe perspective effect due to the aircraft banking while turning. The top image corresponds to intensity, followed
by the NDVIn and pseudocolor images.

Journal of Field Robotics DOI 10.1002/rob



rob21624 W3G-rob.cls September 19, 2015 18:8

Author Proof

14 • Journal of Field Robotics—2015

Figure 11. An scene that shows the effect of wind on the airplane while it was banking. Intensity, NDVIn, and pseudocolor images
are shown.
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The hyperspectral images retain a level of detail on a par
with the conventional camera images, with little blurring or
distortion.

7. CONCLUSION

Based on an auxiliary conventional camera, we have pre-
sented a method to acquire images with a pushbroom hy-
perspectral sensor. Our approach maps each hyperspectral
line to a line in the conventional camera image plane. We
showed that this can only be achieved for arbitrary world
point depths when the hyperspectral line is an epipolar line
too. Two variables that need to be determined given this
line-to-line mapping are the scale of each hyperspectral line
segment and its displacement with respect to the conven-
tional camera line segment over which it is mapped. Nonlin-
ear optimization through direct search methods yields the
best results when dealing with such a task. We have tested
parallel implementations of these optimization algorithms
that resulted in promising reductions in computation time,
making hyperspectral image creation more practical.

The final assembly of a hyperspectral image involves
finding the homographies between conventional camera
image pairs. This is done to create an image mosaic and
at the same time the hyperspectral image. The data cubes
produced by the application of our technique show remark-
able alignment with the conventional camera mosaics, de-
livering high-resolution spectroscopy from a low-cost UAV.
We must stress the inexpensiveness of the equipment we
used when compared to other solutions. Other than the hy-
perspectral camera, the rest of the platform, including the
airplane, the secondary camera, and the onboard computer,
has a lower cost than some software packages.

Several challenges can to be addressed by our method,
including the absence of pose information for the cameras
while they captured the images, and the presence of external
disturbances such as wind gusts. We showed that assum-
ing that the scene is planar works in practice, even if the
terrain is not flat. Future research will focus on extending
the techniques described to cover wider areas with multi-
ple flight lines. Furthermore, we plan to apply this research
to specific field studies in remote sensing. An important
task to perform during these studies will be to combine our
technique with the placement of ground control points so
that the perspective transformation between the generated
hyperspectral images and the ground surface enables the
creation of a fully georeferenced data set.
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