
Q. J. R. Meteorol. SOC. (1995), 121, pp. 1681-1704 

Lagrangian four-dimensional variational data assimilation of chemical species 

By M. FISHER" and D. J. LARY2 
Meteorological Ofice, UK 

'Cambridge University, UK 

(Received 15 March 1994; revised 16 December 1994) 

SUMMARY 
For the first time, the method of four-dimensional variational data assimilation is applied to the analysis of 

chemically active trace species. By combining observations with a numerical model to analyse siniultaneously 
several species over a period of a few days, the analysis method is able to exploit information which is not available 
to conventional analysis techniques. Moreover, effective use can be made of asynoptic observations even for species 
which have strong diurnal cycles. Synoptic analyses are produced. A Lagrangian approach is adopted, allowing a 
separation of dynamics and chemistry which considerably reduces the computational expense of the method. 

KEYWORDS: Atmospheric chemistry Data analysis Lagrangian model Stratosphere Variational data 
assimilation 

1. INTRODUCTION 
The analysis of chemical trace species has received little attention in comparison with 

the analysis of meteorological variables. Current methods tend to treat species indepen- 
dently, ignoring the complex balances which exist between species. Moreover, the large 
diurnal variations in the concentrations of many species are either accounted for in very 
simple ways, or avoided by analysing concentrations at fixed local time. 

Salby (1982a, 1982b) presented a temporal and spatial interpolation method for pro- 
ducing synoptic analyses from asynoptic satellite data. This method is well suited to the 
analysis of slowly varying fields, but is not suitable for the anaiysis of species with short 
photochemical timescales such as NO2 (Salby 1987). In an alternative approach, Haggard 
et al. (1988) used a Kalman filter to analyse retrievals of water vapour and NO2 from the 
LIMS instrument (Gille and Russell 1984) on board the Nimbus-7 satellite. Their method 
was based on a linear model of the variation of species concentration along the orbital track 
of the satellite and took advantage of the sun synchronous orbit of Nimbus 7 to produce 
analyses which are valid for fixed local time. 

Austin (1992) analysed observations of chemical species from the LIMS instrument 
by inserting observations of 03, HN03, N02, and H20 into a two-dimensional chemical 
model. Austin's method-a simple form of data assimilation-has several advantages. The 
use of a chemical model allows knowledge of atmospheric chemistry to be incorporated into 
the analysis procedure. The model is capable of predicting accurately the time evolution 
of species over short periods, allowing information from asynoptic observations to be 
propagated to a common synoptic time. With Austin's method it is also possible to analyse 
several species simultaneously. 

Although a significant step forward, direct insertion of observations into a chemical 
model has some disadvantages. First, the analysed concentrations do not satisfy the equa- 
tions of the model since the equations are modified by the addition of forcing terms which 
'nudge' the analysed concentrations towards the observed concentrations. Second, obser- 
vations may be 'rejected'. For example, if the daytime concentration of NO2 is perturbed 
by insertion of an observation, the model will rapidly adjust the perturbed value to restore 
photochemical equilibrium with other species in the NO, family. In meteorological data 
assimilation, rejection is minimized by balancing the increments to the model (Bengtsson 
* Corresponding author, current address: European Centre for Medium-Range Weather Forecasts, Shinfield Park, 
Reading, Berkshire RG2 9AX, UK. 
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and Gustafsson 1971). A similar procedure is possible when assimilating chemical species. 
For example, given an observation of one species in a photochemical family, equilibrium 
equations can be used to calculate consistent changes to other species within the family. 
The success of this approach depends on the accuracy of the assumption of photochem- 
ical equilibrium. A particular problem is that the partitioning of species within a family 
may depend on the concentrations of species which are outside the family. The balanc- 
ing process may introduce errors if the concentrations of these species are poorly known. 
Direct insertion may also be incapable of correctly inducing the concentration for such 
‘controlling’ species even when the partitioning of species within the family is known. 

The Upper Atmosphere Research Satellite (UARS) has provided a rich set of obser- 
vations of trace species concentrations in the middle atmosphere (see, for example, Reber 
1993). The asynoptic nature of the observations, the precessing orbit of the satellite and the 
ability of the observing instruments to produce collocated observations of several species 
highlight the shortcomings of conventional analysis techniques. In this paper, we present 
an analysis method which is well suited to UARS observations, and which overcomes the 
shortcomings of direct insertion data assimilation. Our method of analysis uses the tech- 
nique of four-dimensional, variational data assimilation (4D-Var) which was developed in 
the context of the analysis of meteorological variables by several authors, including Lewis 
and Derber (1985), LeDimet and Talagrand (1986), and Talagrand and Courtier (1987). 
The method may be regarded as an application 01 the theory of optimal control (Lions 
1971). 4D-Var is currently being considered by a number of centres for the operational 
analysis of meteorological observations for numerical weather prediction. The method has 
been applied to the analysis of humidity, treated as a passive tracer, by Andersson ef al. 
(1992). A comprehensive bibliography for the subject has been given by Courtier ef al. 
(1993). 

4D-Var seeks to produce an analysis which fits a set of observations taken over a 
period of time, subject to the strong constraint that the evolution of the analysed quantities 
is governed by a deterministic model. By imposing the equations of the model as strong 
constraints, the analysis problem is reduced to that of determining initial values for the 
model such that the subsequent evolution minimizes a measure of the fit to the observations. 

The model used here is a photochemical ‘box’ model. That is, the model simulates 
the evolution of chemical trace species for a number of independent air parcels whose 
trajectories are assumed to be known a priori. The analyses of dynamical and chemical 
variables proceed separately, thus allowing a considerable reduction in computational 
cost since it is unnecessary then to model the entire three-dimensional domain, or to 
include a dynamical model in the iterative analysis procedure. However, separation of the 
chemical and dynamical analyses prevents the use of some useful information. Specifically, 
observations of chemical species contain information about the wind and temperature 
distributions which is ignored in our analysis scheme. 

We have evaluated our analysis method in two ways, which we discuss in sections 4 
and 6, respectively. In section 4 we apply the technique to the analysis of concentrations 
of trace species for the idealized case of a single, stationary air parcel. Observations are 
taken from an integration of the photochemical model. In section 6 we apply the method 
to the analysis of retrievals of concentrations of trace species from measurements made 
by the MLS and CLAES instruments on board the UARS satellite. We demonstrate that 
the method is capable of analysing such observations accurately. 

The analysis method and the chemical model are described in sections 2 and 3. In 
section 5 we discuss the ability of four-dimensional variational analysis to make use of 
information which is not available to conventional analysis methods or to simpler methods 
of data assimilation. Conclusions are given in section 7. 
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2. ANALYSIS METHOD 

4D-Var expresses the analysis problem as the minimization of a cost functional, $, 
defined as 

Here, xo is the vector of initial parcel concentrations, x b  is an independent estimate 
of the initial parcel concentrations, and B is the covariance matrix of expected errors in xb. 
The expression (xb - X~)~B-’(X, ,  - xo) is generally called the ‘background term’ of the 
cost functional, and xb is called the background. 

The vector y, in Eq. (1) consists of all observations which are considered valid at 
timestep n ;  sn is a vector of ‘model equivalents’ of the observations. That is, each element 
of s, is an estimate of the corresponding element of y,, based, in our application of the 
method, on the parcel concentrations at timestep n. In the analyses we present here, s, is 
a linear function of parcel concentrations, i.e. 

Sn = Hnxn 7 

where x, is the vector of concentrations of all species for all parcels at timestep n ,  and Hn 
is an ‘observation operator’. We leave further discussion of the calculation of sn until later. 

The matrix R, is the covariance matrix for the random errors in the term (y, - s,) 
which would be expected given a perfect analysis. That is, R, accounts for the random 
errors in the observations and the ‘representativeness errors’ (Lorenc 1986) introduced in 
simulating the observations. 

The strong constraints of the model equations are incorporated into the analysis by 
regarding 8, as a function of the initial concentrations only-i.e. as a function of xo. 
Concentrations at subsequent times are determined by integrating the model equations 
forward in time. This procedure produces two major simplifications. First, it replaces a 
constrained minimization problem with an unconstrained problem. (Numerical algorithms 
for unconstrained minimization are considerably more efficient and less prone to problems 
of ill-conditioning than are algorithms for constrained minimization.) Second, the number 
of independent variables is reduced by a factor of N + 1. 

The analysis scheme uses a descent algorithm to produce a convergent sequence of 
estimates of the vector xo which minimizes the cost functional. The algorithm requires 
the calculation of the gradient of the cost functional with respect to xO. This is evaluated 
by integrating the adjoint of the tangent linear equations for the model. These equations 
may be derived in a number of ways. Talagrand and Courtier (1987) derived the equations 
using the theory of adjoint operators. A derivation in terms of Lagrange multipliers is 
also possible (Daley 1991). We present the following derivation primarily to clarify our 
discussion in section 4. 

Define the functional $m in the form 
- 1 N  

A n=m 

Now consider an infinitesimal variation, Sxo7 in the initial concentrations. At each 
subsequent step m of the model, there will be corresponding infinitesimal variations, Sx, 
and Sg, in the concentrations and in the functional 8,. 

$,,, depends only on concentrations at step m and later. Since these concentrations 
are uniquely determined by the equations of the model and the concentrations for any 
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step i < m, it is legitimate to regard $m as a function of the concentrations at step i only. 
By definition, the gradient of $, with respect to the concentrations at step i satisfies the 
equation 

Suppose that Vxm 9m is known. We then wish to calculate VXm-, 8,rn-1, and hence, by 
induction, to calculate 

(3) 
T 

&$m = (Vx? 8,) S x i .  

(4) T -1 1 
2 v, 8, = v, $0 + v,- [ (Xb - x 0 )  €3 (Xb - X 0 ) J  * 

From the definition of $ m ,  we have 

T -1 1 
Vxm-l 8 , , -1=  Vxm-l $m + jVx,,-l [ (ym-1  - sm-1)  R m - l ( y m - l  - S m - l ) }  . (5)  

The ease with which the second term in Eq. ( 5 )  may be evaluated depends on the 
complexity of the method of simulating observations. To evaluate the first term in Eq. (9, 
note that for an arbitrary infinitesimal variation in x m - l ,  we have by Eq. (3), 

T 
S$m = (Vx,,-I 8,) SXm-1 

and 
T 

A$m = (Vxm $ m )  6 x m .  

If the equations of the model are written as 

x m  = JL-1  (xm-1) (7) 

SX, = Mm-l S X , - ~  (8) 

then, for infinitesimal variations, 

where MmP1 is a matrix whose elements are the partial derivatives of the elements of 
with respect to the elements of x , -~ .  

Substituting Eq. (8) into Eq. (6) gives 

(9) 

(10) 

T T 
(Vx,-l $ m )  S x m - l =  (Vxm 8,) ( M m - 1 6 x m - 1 )  

T 
= (MT,-~  vxm 8,) S x m - 1 .  

Since this equation holds for arbitrary S X , _ ~ ,  we must have 

vxm-,  = ~ ; f l - i v x m  8,. (11) 

Hence, by Eq. (5),  

T -1 1 
2 

T Vxm-l 8 , m - I ~  Mm-l Vx,,, $m + -Vxm-l { (ym-1  - sm-1)  R m - l ( y m - l  - s m - l ) }  . (12) 

This is the adjoint tangent linear (ATL) equation. Given Vxm 8,  the equation allows 
Vxm-, BmP1 and so, by induction, V, 6f0, to be calculated. Once V, $0 is known, the 



4-D VARIATIONAL ANALYSIS 1685 

required gradient of the cost functional with respect to the initial conditions is given by 
Eq. (4). 

Starting the induction at step N we have 

The algorithm used to minimize 9 is as follows. 

1. Start with an initial guess for xo. 
2. Integrate the photochemical model to give x,, for n = l . . .N.  
3. Evaluate $. If the value of 3 is small enough then STOP. 
4. Iterate the ATL equations to calculate V,, $. 
5. Use a descent algorithm to find a better guess at xo (i.e. a guess for which $ is 

6. GOT0 2 
reduced). 

3. THE CHEMICAL MODEL 

The model used in this study is a new model by Lary called AutoChem (Lary et al. 
1995). The model is explicit and uses the adaptive-timestep Bulirsch-Stoer time integration 
scheme (Stoer and Bulirsch 1980) with error monitoring designed by Press et al. (1992) 
for stiff systems of equations. The integration scheme is as accurate as the often used Gear 
(1971) package, but faster. Photolysis rates are calculated using full spherical geometry and 
multiple scattering as described by Lary and Pyle (1991a,b) after Meier et al. (1982) and 
Anderson (1983). For this study, photolysis rates were updated every fifteen minutes. A 
single ozone profile, representative of northern hemisphere middle latitudes during winter, 
was used for all photolysis calculations. 

An extremely useful feature of the model is the existence of a code-generation pro- 
gram which automates the process of writing numerical chemical models. Given a set of 
reaction data-bases for bimolecular, trimolecular, photolysis and heterogeneous reactions 
the program automatically writes the Fortran code for calculating the time derivatives and 
the Jacobian matrix required by the numerical integration program. This enables new re- 
action schemes, covering different chemical species or rates, or both, to be implemented 
without the need for manual coding. The user specifies which reactants and products should 
be included. Reactions which are just upper-limit estimates, with unknown products of the 
required species, or reactions which are endothermic by more than a given amount can be 
automatically excluded if required. 

Our analysis method integrates the adjoint of the tangent linear equations for the model 
in addition to integrating the model. The number of code changes required to implement 
new reactions in the analysis scheme is about double the number required to implement 
the reactions in the model alone. By modifying the code generation program to write code 
automatically for the adjoint tangent linear model, we have extended to the analysis scheme 
the ability to implement new reactions without manual coding. We intend to exploit this 
ability in future studies to determine the effect on the accuracy of the analysis of including 
or excluding various species and reactions. 

For this study, a simple reaction scheme was chosen deliberately to provide a better 
understanding of the characteristics of the analysis method. Table 1 lists the reactions 
and rate coefficients used. Six species are integrated, namely: O(3P), 03, NO, NOz, NO3 
and N2OS. Seven bimolecular reactions, five trimolecular reactions and seven photolysis 
reactions are included. The rate constants for the reactions were taken from DeMore et al. 
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(1992). Although simple, the reaction scheme is sufficiently complete to describe the main 
photochemical processes influencing the integrated species over periods of a few days. 

TABLE 1. THE REACTION SCHEME USED IN THIS STUDY. THE RATES OF 
ALL THESE REACTIONS ARE TAKEN FROM DEMORE et al. ( I  992) 

o(3~) + 0 3  -+ o2 + o2 kbl 
o ( 3 ~ )  +  NO^ + NO + o2 kb2 
O(3P) + NO3 + 0 2  + NO2 kb3 

NO + NO3 + NO2 + NO2 kbS 
0 3  + NO2 + NO3 + 0 2  kbb 
NO2 + NO3 * NO + NO2 + 0 2  ky ,  

0 3  + NO * NO2 + 0 2  kb4 

M 

M 

M 

M 

o ( 3 ~ )  + oz -+ 0 3  

O(3P) + NO -+ NO2 

O(3P) + NO2 * NO3 
NO2 + NO3 + Nz05 

M 
N20s -+ NO2 + NO3 kt5 

0 2  + hw -+ OOP) + O(3P) 
0 3  + hu + 0 2  + O(3P) J2 
NO2 + hu * NO + O(3P) J 3  
NO3 + hw -+ NO + O2 J4 

No3 + hw -+ NO2 + O(3P) is 
NzOs + hu + NO3 + NOz j b  
NzOs + hw + No3 + NO + O(3P) j ,  

4. IDEALIZED ANALYSIS FOR A SINGLE PARTICLE 

In this section we consider a single parcel which, it is supposed, remains at a constant 
longitude, latitude, pressure and temperature. The solid lines in Fig. 1 show the evolution 
over a period of 36 hours of species concentrations for a parcel at position WE, 43.7"N and 
pressure 5 hPa. The temperature of the parcel was kept at 228 K throughout the integration. 
The model was initialized at 12 UTC, and initial concentrations were chosen to be typical 
of air at this latitude and pressure. For brevity, we refer to this integration as integration 
A. 

A second integration, B, was performed, marked by the dashed lines in Fig. 1. For 
this integration, the initial concentrations of all species were double those for integration 
A. 

To test the analysis procedure, the concentrations of O3 and NO2 at each model 
timestep were extracted from integration A and used as observations. These species corre- 
spond to those used in the analysis of UARS data referred to in section 6, and represent the 
species for which accurate measurements are currently available. The observation opera- 
tors, H,, for this analysis were simply 6 x 2 matrices of ones and zeros which picked out 
the O3 and NO2 values from the vector of model values at each timestep. The covariance 
matrices, R,, were specified as constant and diagonal with elements proportional to the 
square of the initial concentrations of O3 and NOz. The initial concentrations of integra- 
tion B were used for the first guess. The background term was not included in the cost 
function. This ensured that any success in analysing the correct concentrations was due to 
the influence of the observations. 
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Figure 1. Model integrations for a single, stationary parcel. Solid lines show integration A, dashed lines show 
integration B. In each plot, volume mixing ratio is plotted as a function of time in hours past midnight on the initial 

day. Note the different scales for the ordinates. 

The minimization algorithm used for the analysis was the Polak-Ribibe (Polak 1971) 
variant of the conjugate gradient descent algorithm. To avoid problems due to negative 
concentrations, the minimization was performed with respect to the logarithms of the 
initial concentrations. This also acts as a simple preconditioning by non-dimensionalizing 
the control variables. The approximate line minimizations required at each iteration of the 
algorithm were performed by fitting a quadratic function to the value of the cost functional 
and the component of its gradient along the descent direction, and to the value of the cost 
functional at a single trial point. Evaluating the cost functional at the minimum of the 
quadratic was found to achieve adequate descent for most iterations and requires just two 
evaluations of the cost functional and one evaluation of its gradient. Ten iterations of the 
analysis procedure were found to be sufficient to achieve good convergence. 

Figure 2 shows the relative differences in percentage between an integration using 
the analysed initial concentrations and integration A. Analysed values of the two observed 
species are well within 1% of the ‘observations’ throughout the analysis period. In addition 
the analysis procedure has accurately analysed the unobserved species, with the exception 
of the first six hours when N2O5 and NO3 are poorly analysed, and for short periods just 
after sunset when the NO concentration is in error by about 4%. 

The relative difference between the true (i.e. integration A) and analysed initial con- 
centrations of Nz05 is loo%, indicating that the analysis has not modified the first-guess 
concentration. There is no observation of NzO5 to constrain the initial concentration and the 
decay of Nz05 into NOz (the primary way in which N205 interacts with the other species 
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Figure 2. Relative differences in percentage plotted as a function of time in hours past midnight between true 
and analysed concentrations for an analysis using observations of 0 3  and NO2 only. Errors for O(3P) are plotted 

only when the volume mixing ratio of O(3P) is greater than lo-”. 

of the model during the day) is on the timescale of hours. The concentration of N205 at 
the initial time (noon) is small. As soon as the sun sets, N205 production commences and 
the concentration starts to increase. The rate of production, via reaction kbb followed by 
kt4, is dependent on the O3 concentration and on the temperature. Since the temperature 
is known and the O3 concentration is accurately analysed, the rate of production of N205 
is accurately determined and the relative difference between the true and analysed N205 
concentrations decreases. 

The relative difference between the true and analysed initial concentrations of NO3 
is about 25%, however the daytime concentration of NO3 is small. During the day, NO3 
has a photochemical time constant of a few seconds and is therefore in photochemical 
equilibrium. The main sources of NO3 are photolysis of N2O5, the reaction of ozone 
with NO2 and the reaction of O(3P) with NO*. At the start of the integration the N2O5 
concentration is relatively large. Consequently, N2O5 is an important factor in determining 
the concentration of NO3. The large initial error in NO3 reflects the large error in N2O5. 
During the first few hours of integration, the concentration of NzO5 decreases markedly 
while that of NO2 increases. As a result, the importance of N205 in determining the NO3 
concentration diminishes, as does the error in NO3. 

Close to sunset, the destruction of NO is faster than its production. The sharp peaks 
in differences between true and analysed NO reflect the more rapid loss of NO due to the 
overestimate of O3 in the analysis. This is supported by the fact that the second peak, when 
the O3 concentration is closer to the true value, is of smaller magnitude than the first. 
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The ‘observations’ used to produce the analysis presented above were exact. Obser- 
vations derived from satellite data, on the other hand, contain both random and systematic 
errors. To determine the sensitivity of the analysed concentrations to errors in the ‘observed’ 
concentrations, a series of analyses was done for which the observed concentrations were 
modified. Three analyses were done to determine the sensitivity to systematic errors in 
the observations. For these analyses, the observations of O3 ,NO2 or of both species were 
increased by 10%. The relative changes induced in the analysed concentrations are shown, 
respectively, by the dotted, dashed and dot-dashed lines in Fig. 3. In all three cases, changes 
in analysed concentrations are less than 20%, except at sunset when changes in the concen- 
tration of NO briefly reach around 45%. The increase in analysed ozone concentration, due 
to a systematic increase in the 0 3  observations, is less than the increase in the observations, 
indicating that the analysed ozone concentration is constrained by information extracted 
from the observations of NO2. It is likely that this information derives from the diurnal 
cycle of NO2. 

Although not a conclusive test, the results of these analyses suggest that, with this 
chemical scheme, the relative biases in the analyses of both the observed and the unobserved 
species are of the same order as the systematic biases in the observations. 

A further analysis was carried out to test the sensitivity of the analysed concentrations 
to random noise in the ‘observed’ concentrations. For this analysis, a random amount was 
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Figure 3.  Relative differences between analysed concentrations using perturbed observations and an analysis 
using unperturbed observations. For three analyses, observations of 0 3  (dotted lines), NO2 (dashed lines) or of 
both species (dot-dashed lines) were increased by 10% throughout the analysis period. For the fourth analysis 
(solid lines) random noise was added to the observations. Differences are plotted in percentage as a function of 

time in hours after midnight. 
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added to each observation of O3 and N02. The random perturbation to each species was 
uniformly distributed with a zero mean value and a maximum absolute value equal to 10% 
of the initial concentration. The relative differences between the analyses using noisy and 
unperturbed observations are shown by the solid lines in Fig. 3. The analysis has clearly 
filtered the noise from the observations. 

5. INFLUENCE OF OBSERVATIONS 

The analyses presented in section 4 illustrate one major advantage of the variational 
analysis scheme presented in this paper, namely that observations of one species can convey 
useful information about other species. The propagation of information from species to 
species results from the non-diagonal nature of the matrices M, in the adjoint tangent 
linear equations. Since these equations are linear, the effect of each observation on the 
gradient of the functionals 8, is additive and it is possible to examine the propagation of 
information between species by examining the influence of single observations. 

Equation 3 relates infinitesimal changes in xi to the corresponding changes in 8,  via 
its gradient. The term VXm 8, may therefore be interpreted as indicating the sensitivity of 
8,  to small changes in the concentrations at step m (Rabier et at. 1993). 

Consider the case in which there is a single observation at step n 2 m. Then 9, = 8 
and Vxm 9, indicates the sensitivity of the cost functional to changes in x,. However, the 
information provided by the gradient of the cost function requires careful interpretation. 
In particular, the photochemical balances between species in the model imply that not all 
changes to x ,  are possible. For example, it is not possible to modify the initial conditions 
of the model to achieve a change in x ,  for which O3 and O(3P) are not in photochemical 
equilibrium. Further, in a full application of the analysis method, the possible changes to 
x ,  will be constrained by the requirement to fit observations at earlier steps. In view of 
these difficulties, we prefer to interpret VXm 9, as indicating the sensitivity of the cost 
functional to changes in the initial concentrations for an analysis for which the step m is 
the initial step. 

In order that species may be compared, whose concentrations differ by orders of 
magnitude, it is convenient to consider the effect of relative rather than absolute changes 
in concentration. To do this, note that 

where the notation ( . ) j  denotes the j th element of a vector. Thus (Vxm 9m)i ( X m ) i  measures 
the sensitivity of the cost functional to small relative changes in concentration for species i. 

We define an ‘influence function’, y i ,  j , m , n ,  as 

The denominator provides a normalization, so that form = n the value of the influence 
function is unity for i = j .  (For m = n and i # j ,  the influence function is zero.) The 
value of the influence function for species i indicates the sensitivity of the fit to the 
observation to small relative changes in initial species concentrations. A large absolute 
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Figure 4. Graphs of the influence function, x , , , ~ , ~ .  Each panel shows the influence function values as a function 
of time in hours after midnight resulting from a single observation of one species at noon. Note the different scaling 

for the ordinate in the graph for N205. 

value of the influence function for species i due to an observation of species j indicates 
that observations of species j play an important part in determining the analysed initial 
values for species i , 

Figure 4 shows the influence function evaluated for integration A. Each plot corre- 
sponds to a different observed species. In each case, a single observation was made at 
local noon (36 hours on the time axis). Values of the influence function for O(3P) are not 
shown since they are negligible for observations of all species; except, by definition, for 
an observation of O(3P) at the time of the observation. This is because changing the initial 
concentration of O(3P) has negligible effect on the subsequent course of the integration. 
O(3P) equilibrates rapidly, but in doing so does not significantly affect the concentrations 
of other species. Note however that, although the analysis scheme is unable to determine 
an initial value for O(3P), its concentration at all subsequent times will be accurately deter- 
mined through photochemical equilibrium with 03. All species in the model except O('P) 
have some influence on the analysed initial values of one or more unobserved species, 
showing that these observations contain information about unobserved species. 

The influence function for an observation of O3 shows that the main factor determin- 
ing the degree to which the integration fits the observation is the initial value of 0 3 .  In the 
photochemical scheme used, the time constant for ozone at this level is quite long. Con- 
sequently, the concentrations of other species have a relatively small role in determining 
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the ozone concentration during the integration. A small sensitivity to the concentrations 
of NO and NO2 is reflected in the values of the influence function for these species. 

The graphs of the influence function for observations of NO and NOz show a num- 
ber of interesting features. The partitioning of NO, is controlled primarily by the ozone 
concentration, This is reflected in the large values of the influence function for ozone. 
During the day NO and NO2 are, to good approximation, in photochemical equilibrium. A 
change to the initial value of either species will quickly equilibrate, producing a change in 
the total NO, concentration. Since the concentrations of the two species are comparable, 
a particular relative change in the initial concentration of either species will have a similar 
effect on the cost functional. As a result, the influence function values for both species 
are similar during the day. At night NO is rapidly converted to N02. Even a large relative 
change in the night-time NO concentration will produce a negligible change in NO,. Dur- 
ing the following day, therefore, the concentration of NO is insensitive to small changes 
in the night-time NO concentration, but depends strongly on the concentrations of NO;! 
and 03. The large influence of NOz measurements on the concentration of ozone explains 
why, in Fig. 3, unbiased observations of NOZ were able to reduce the bias in the analysed 
ozone concentration significantly. 

The sensitivity of NO3 to initial ozone, NO and NO2 concentrations is similar to that 
of NO and NOz. However, neither NO nor NO2 is sensitive to the initial concentration of 

The values of the influence function for an observation of N205 are high, with marked 
diurnal cycles for most species. As well as the diurnal cycle, there is an increase in the 
values of the influence function as the period between the initial time and the time of the 
observation increases. This is because Nz05 is a reservoir species with a time constant 
of hours, but whose concentration is influenced in the long term by the concentrations of 
most other species in the model. It is likely that the usefulness of observations of N205 
and other reservoir species for 4D-Var will depend on the length of the analysis period. 

Figure 5 shows the influence functions for observations made at midnight (48 hours 
on the time axis). The influence function for a night-time ozone observation is similar to 
that for a daytime observation and reflects the long photochemical time constant for O3 at 
this level. The influence functions for night-time observations of NO and NZO5 are also 
similar to those for daytime observations. 

A night-time observation of O(3P) produces a very large value of the influence func- 
tion for several species, in particular for ozone. However, it should be noted that the 
concentration of O(3P) during the night is effectively zero. Useful measurements of O(3P) 
are unlikely to be possible at night. Moreover, the night-time concentration of O(3P) in the 
model is dominated by numerical rounding errors, making comparison with observations 
impossible. The influence function for a night-time observation of NO3 is remarkably 
similar to that for 03. For both NO3 and O3 observations, the influence function for 0 3  
remains at about unity throughout the analysis period, whereas for other species it is 
small. The photochemical behaviour of NO3 and 03, however, is markedly different. The 
photochemical time constant for ozone is long, so that the concentration at the time of the 
observation is determined mainly by the concentration at the initial time. NO3 on the other 
hand has a short photochemical time constant. However, the night-time concentration of 
NO3 is, to a good approximation, proportional to the concentration of 03. A change in the 
initial concentration of ozone therefore produces nearly identical relative changes in the 
concentrations of ozone and NO3. 

The partition between daytime values of NO2 and NO is largely determined by the 
concentration of 03. This is reflected in the opposite signs for the values of the influence 
function for ozone due to observations of NOz and NO at noon. Observations which 

N03. 
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indicate that the analysed value of NO2 should be increased, whereas that of NO should 
be decreased (or vice versa) would combine to have a strong effect on the analysed ozone 
concentrations. Thus the analysis method is able to extract useful information from the 
partitioning of species within a family. 

The diurnal cycles of some species can also convey useful information about the 
concentrations of other species. For example, the main cause of the large difference between 
daytime and night-time concentrations of NO2 is the rapid photolysis of NO2 to produce NO 
at dawn, and the recombination of NO to form NO2 at dusk. The difference between daytime 
and night-time observations of NO2 therefore provides information on the partitioning 
between NO2 and NO, and hence on the ozone concentration. The ability of 4D-Var to 
make use of such information is reflected in the opposite signs for the influence function 
for ozone due to noon and midnight observations of NO2. 

The influence function provides a useful tool with which to diagnose the behaviour 
of the analysis system. However, it is clear from the example of daytime O(3P) that, while 
a small value of the influence function for a species indicates an insensitivity of the cost 
functional to changes in initial concentration, it does not preclude accurate analysis of the 
species at later times. This is also illustrated by the differences between the analysed and 
'true' NO3 and N205 concentrations plotted in Fig. 2. Both species show large errors in 
analysed initial concentrations, as expected from the small values of influence function 
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Figure 5. Graphs of the influence function as for Fig. 4, but for observations at midnight. 
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for these species for O3 and NO2 observations. Nevertheless, both species are analysed 
accurately for most of the analysis period. 

6. ANALYSIS OF UARS DATA 

In this section, we present a variational analysis for the 1100 K isentropic surface 
of observations made by instruments on board the UARS satellite. Several of the in- 
struments measure one or more of the species in our model. We have chosen to use O3 
retrievals (version 3) from the 205 GHz channel of the MLS instrument and retrievals of 
NOz (version 6 )  from the CLAES instrument. Retrievals of temperature are available from 
these instruments and are collocated with the species retrievals. The temperature retrievals 
from each instrument were used to calculate concentrations on the 1100 K isentropic sur- 
face to provide the observations required by the analysis scheme. A one-hour analysis 
timestep was used. That is, consecutive values of n in Eq. 1 correspond to times one hour 
apart. At each step, observations were considered valid for use at that step if they were 
taken within a half hour of the model time for the step. 

Isentropic trajectories for 1716 parcels were calculated using a fourth-order Runge- 
Kutta trajectory scheme. The scheme has been adapted from that described by Fisher et al. 
(1993) to allow advection of particles on an isentropic surface. Winds and temperatures 
from the UK Meteorological Office stratospheric analyses (Swinbank and O'Neill 1993) 
were used to perform the horizontal advection and to locate the 1100 K isentropic surface. 
Forward and backward trajectory calculations from 12 UTC on 10 January 1992 were per- 
formed and combined to produce trajectories covering the period 00 UTC on 9 January to 
00 UTC on 11 January. At 12 UTC on 10 January the parcels were located at the points of a 
regular polar stereographic grid with an approximate horizontal resolution of 370 km. 

Figure 6 shows winds and temperatures on the 1100 K isentropic surface for 12 UTC 
on 10 January 1992, calculated from the UK Meteorological Office stratospheric analyses. 
The pressure of the 1100 K surface varies between approximately 3.6 hPa (where the 
temperature is 220 K) and 8.3 hPa (where the temperature is 280 K). The polar vortex is 
displaced from the pole along longitude WE and air from low latitudes moves polewards 
and downwards as it is transported around the vortex and warms adiabatically as it descends. 
The use of observations which are not collocated with the air parcels of the model makes 
the calculation of the model's equivalents of the observations more complicated than for 
the idealized analysis described in section 4. We have used a rather crude, but simple, 
method to simulate the observations of mixing ratio on the isentrope. Each observation 
is regarded as representing, to within observational error, the average mixing ratio over a 
finite area. For each observation, the equivalent for the model is calculated by averaging 
the mixing ratios for all parcels which lie within the observation area. To the extent to 
which the spatial distribution of particles within each area may be regarded as random, 
this gives an unbiased estimate of the mean mixing ratio in the area. The variance of the 
estimate is simply the ratio of the variance of the sampled field to the number of particles 
within the area. 

The observation operator requires no statistical information about the spatial corre- 
lations of the fields of mixing ratio. A particular advantage is that, for non-overlapping 
observation areas and an assumption of random distribution of particles within each area, 
the representativeness errors are spatially uncorrelated. The contributions of errors of rep- 
resentativeness to the covariance matrices R,, are therefore diagonal. For simplicity, the 
observation errors were also assumed to be spatially uncorrelated and observation errors 
for O3 were assumed to be uncorrelated with observation errors for NO2 . The covariance 
matrices R,, were therefore diagonal. 
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Figure 6. Winds and temperatures on the 1100 K isentropic surface for 12 UTC on 10 January 19Y2. Circles are 

drawn at 10"N, 30"N and 60"N. The Greenwich meridian extends downwards from the centre of the chart. 

Each 'observation area' was defined as the region delimited by ho f 6A. and 4" f 64 
where ho and @O are the nominal longitude and latitude of the observation. The values of 
Sh and 84 were chosen to give an area covering 800 km in the meridional direction and 
2000 km in the zonal direction at the equator. The observation areas defined in this way 
are considerably larger than the true averaging areas of the instruments and represent a 
compromise between representing the characteristics of the observations accurately and 
reducing sampling errors by increasing the number of particles in the observation areas. 

Estimation of the observation errors is complicated both by the use of unrealistically 
large observation areas and by the need to account for errors in the interpolation onto 
the 1100 K isentrope. We did not attempt to estimate the additional errors introduced 
by these factors and merely assumed rather large values for the variances of observation 
error. Standard deviations of 4.5 ppmv for ozone measurements and 10 ppbv for NO2 
measurements were used. 

The specification of the background term is complicated by the irregular positioning 
of the air parcels at the initial time. The number of particles is sufficiently large that explicit 
construction of the background-error covariance matrix, its inversion and multiplication 
by the vector of initial parcel concentrations are computationally expensive operations. 
Instead, the background term was approximated by the expression 

T -1 
(xb - Xg) D (Xb - XO) + - XO - s(xb - X O ) ) ~ D - ~  {xb - XO - S(Xb - Xg)} . (14) 

Here, D is a diagonal matrix whose non-zero elements are the variances of background 
error and the matrix S is a smoothing operator. Multiplication by S was implemented by 
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replacing each parcel concentration by a weighted average of nearby parcel concentrations 
for the same species. For smooth departures of xo from the background, the second term in 
Eq. (14) isnegligible, since the smoothing operator has little effect on such fields. For small- 
scale departures from the background, the term s(& - xo) is small. Such departures are 
penalized by a factor (1 + a) more heavily than the largest scales. A particular advantage 
of this approximation to the background term is that, for any smoothing operator, the 
effective background error covariance matrix is guaranteed to be positive definite. 

Values for x b  were calculated as follows. First, typical mid-January concentrations 
of all species were interpolated from a two-dimensional isentropic model (Kinnersley and 
Harwood 1993) onto the initial positions of the air parcels. The concentrations were then 
allowed to adjust to local conditions of pressure, temperature and solar illumination by 
integrating the chemical model used for the analysis for one diurnal cycle with the positions 
of the air parcels kept constant. 

The minimization algorithm used for the UARS analysis was the limited memory 
quasi-Newton scheme MlQN3 due to Gilbert and Lemarechal (1989). This scheme was 
found to be considerably more efficient than the simple conjugate gradient scheme used 
in section 4. Forty iterations of the analysis procedure were performed starting from first- 
guess initial values which were identical to the background values. Figure 7 shows the 
value of the cost functional, relative to the initial cost, for each iteration. Convergence 
is rapid for the first few iterations, after which the cost function appears to approach an 
asymptotic value of about 0.4 times its initial value. The relative change in cost between 
the 39th and 40th iterations is less than 0.1%, indicating that satisfactory convergence has 
been achieved. 

0.8 

0.7 

",I 0.1 0.0 L 
0 5 10 15 20 25 30 35 40 

Iteration 

Figure 7. Convergence of the cost functional during the analysis of UARS observations. 

Figure 8 shows synoptic maps of the volume mixing ratios for all species in the 
model for 12 UTC on 10 January 1992, taken from an integration using the analysed initial 
concentrations for 00 UTC on 9 January. Also shown are mixing ratios for NO, and NO,, 
(defined in our restricted reaction scheme as NO+N02+N03+2N205). At this time, the 
particles are coincident with the points of a regular polar stereographic grid. 
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Figure 8. Analysed mixing ratios for the 1100 K isentrope for 12 UTC on 10 January 1992. (a) OcP) (pptv), 
@) 0 3  (ppmv), (4 NO @pbv), (4 NO2 @pbv), (e) NO3 (pptv), ( f )  N O S  @PW, (g) NO+NOZ ( P P W  

(h) NO+N02+NO3+2N205 (ppbv). The circles plotted on each map represent 30"N and 60"N. 

The concentrations of all the species of the model were modified by the analysis 
procedure. This may be seen by comparing Fig. 8 with Fig. 9, which shows mixing ratios 
for 1 2 u ~ c  on 10 January 1992 for a model integration initialized with the first-guess 
concentrations on 00 UTC 9 January 1992. 

It can be seen from Fig. 8 that 4D-Var has captured the diurnal cycles of OCP), NO 
NOz and NO3 . The terminator can clearly be seen running across the plots, the lower 
portions of which are in sunlight (the analysis is for 12 UTC). 

The effect of the strong cross-polar flow (see Fig. 6) can be seen in several of the 
concentration fields. The 03, NO2 and NO, minima are all shifted from the pole in the 
direction of the cross-polar flow. Notably, the NOz field has a pool of low NOz ,which is 
surrounded by the Noxon cliff (Noxon 1979), displaced in the direction of the cross-polar 
flow. Along the 90"E meridian, the cliff occurs at approximately 70"N whereas along the 
90"W meridian it occurs at approximately 45"N. 
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Figure 9. Mixing ratios for the llOOK isentrope for 12 UTC on 10 January 1992 for a model integration initialized 
with the first-guess concentrations for 00 UTC on 9 January 1992. The species and units for each panel are the same 

as for Fig. 8. 

Advection of lower latitude air, rich in NO, (Fig. 8(h)) enhances the magnitude of 
the Noxon cliff at around position 45"N, 90"W. This feature is particularly notable since 
the largest NO2 concentrations and the steepest latitudinal NO2 gradients would normally 
be expected just after sunset (near longitude 90"E at 12 UTC). 

The analyses of the unobserved species in the model are in accordance with what 
would be expected, given the physical state of the atmosphere. For example, the effect of 
the pool of warm air centred around position 70"N, 90"E is clearly seen in the NO3 field. 
Within and downwind of the warm pool the concentration of NO3 has been considerably 
enhanced. As would be expected, the peak Nz05 concentration is in the polar night region. 
Since the chemical timescale of N205 is of the order of hours (as opposed to minutes for 
NO2), the region of lowest N205 is rotated with respect to the terminator. 

To assess the accuracy of the analysis, the analysed concentrations at the nominal 
time of each observation were interpolated to the locations of observations throughout 
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Figure 10. Differences between observed and analysed mixing ratios. (a) 0 3  (ppmv), @) daytime NO:! (ppbv), 
(c) night-time NOz(ppbv). Unshaded areas indicate differences in the range 10.5 units. Light, medium and dark 
shaded areas indicate differences in the ranges 11, f 2  and more than f4 units, respectively. The locations of the 

observations used for the analysis are shown in the lower plots. 

the analysis period. The differences between observed and analysed mixing ratios were 
then calculated. Figure 10 shows the differences for 03, and for daytime and night-time 
observations of NO2. Differences between observed and analysed O3 have a mean value 
of -0.31 ppmv and a standard deviation of 0.66 ppmv. For NOz the mean difference is 
-1.12 ppbv for daytime observations and -2.19 ppbv for night-time observations. The 
standard deviation of NO2 differences is 0.69 ppbv for daytime observations and 1.5 ppbv 
for night-time observations. The differences between observed and analysed concentrations 
are well within the assumed uncertainty in the measurements, suggesting that our estimated 
variances of observation error were too pessimistic. For ozone, the main differences occur 
at low latitudes. This may reflect the large observation areas used in this region. Differences 
between observed and analysed NO2 concentrations are correlated with low-latitude air. 
This systematic error may result from the use of a simplified chemical scheme. The negative 
bias in the NOZ differences is due to a consistent bias between the background and observed 
concentrations. 

7. DISCUSSION AND CONCLUSIONS 

For the first time, 4D variational assimilation has been used to produce a synoptic 
analysis of chemical species from asynoptic satellite data. The method provides many 
useful insights. The analysis presented for the 1100 K surface at 12 UTC on 10 January 
1992 realistically captured several interesting features, such as a displaced Noxon cliff 

W s 
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due to a strong cross-polar flow, enhanced NO3 concentrations within and downstream 
of a warm pool of air associated with adiabatic descent, the advection of low-latitude air 
rich in NO, to higher latitudes, and the sharp concentration gradients associated with the 
terminator for O(3P), NO, NOz and NO3. 

The analysis method has significant advantages over methods used hitherto. The 
analysis makes use of and is consistent with the temperature and wind distributions. A 
full diurnal cycle is produced for all species included in the model. Full use is made 
of asynoptic observations and the information contained in the partitioning and diurnal 
variation of chemical species is used in the analysis process. The ability to make use of 
such indirect information allows analyses to be produced for species which are not directly 
measured. 

Although the chemical and dynamical assimilations used in this study were per- 
formed separately, they can be seen to be qualitatively consistent. Separating the analysis 
of chemical species from that of the dynamical variables simplifies the analysis problem 
considerably. The corresponding reduction in computational cost allowed all the analyses 
presented in this paper to be performed on a workstation. It is likely, however, that by 
applying 4D-Var to a combined chemical and dynamical model, useful information about 
the distributions of temperature and horizontal and vertical wind components could be 
extracted from observations of chemical species. This information would arise from the 
interaction of dynamics and chemistry in the model. 

The gradient of the cost functional, expressed in this paper by the influence function, 
provides useful information about the sensitivity of the cost functional to changes in the 
initial conditions. However, this information must be carefully interpreted. In particular, 
our results demonstrate that a poor analysis of the initial concentration for a given species 
does not preclude accurate analysis of the species at subsequent times. 

One question which we have left open is the degree to which the gradient calculated 
by the adjoint tangent linear model represents gradients at nearby points. Any practical 
minimization algorithm must use the gradient to make a finite step towards the minimum 
of the cost function. If the gradient is a rapidly varying function of species concentration, 
then only a very small step will be possible, leading to poor convergence. The requirement 
for a slowly varying gradient is equivalent to requiring that small, but finite, variations 
satisfy the tangent linear Eq. (8) to good approximation. This sets a practical limit on the 
length of the analysis period. The success of our analyses suggests that the tangent linear 
equation is valid over a 48-hour period for finite variations in at least some important 
directions in phase space. 

Integrations presented in section 4 suggest that the systematic errors in our analysis of 
unobserved species are likely to be of the same order as the errors in the observed species, 
while random errors may be significantly reduced. A more complete estimation of analysis 
error should attempt to calculate at least the diagonal elements of the covariance matrix of 
analysis error. However, this is currently an area of active research which we consider to 
be outside the scope of this paper. 

We recognize that improvements could be made in the statistical aspects of our analy- 
sis. We have not made use of information about the variation of observational error from 
observation to observation or its spatial and inter-species correlations, and we considerably 
overestimated the variances of the background and observational errors. The observation 
operator could be improved by using a better representation of the spatial averaging of the 
instrument, and by using information from parcels which are outside the observation area. 

The model used for this paper is explicit. This type of model was used because the 
adjoint tangent linear equations are easily derived. However, it would be possible to derive 
these equations for a family model. This would significantly reduce the computational cost 
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of the method both through the increased speed of the model and through the reduction in 
the number of independent variables in the analysis problem. With these improvements, 
global ‘real-time’ analysis of chemical species in four dimensions would become feasible 
on current computers. 
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APPENDIX 

The integration schemes for the chemical and ATL equations 
At each timestep (typically, every 15 minutes) the integration scheme calculates x ,  

from x , - ~  using several intermediate steps. The number of intermediate steps, L ,  is deter- 
mined by monitoring the accuracy of the solution. 

Schematically, 

where 
and 

A 

where 

calculated by integrations with different step lengths, viz. 

represents a single intermediate step. 
Each intermediate step calculates 2, as a weighted sum of a number of trial values 

K 

The coefficients ck extrapolate the trial values to the solution for zero step length and 

Each trial value is calculated using Mk steps of a semi-implicit midpoint method with 
the number, K ,  of trial values is determined by monitoring the convergence of the sum. 

step length hk: 

jEk zl~r,  +  AM^ 
where (1 - hk Jo)AM, =hkfMk - AMk-1 

z,+~ = z j  + Aj  for j = O...Mk - 1 
(I - hkJo)(A, - A,-1) = 2(hk fj - Aj-1) for j = 1...Mk - 1 

(I - hk Jo)& = h  fo 
zo = X l - 1  

A 
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The elements of' the matrix M, of the ATL model are given by 

Substituting for xnC1 and xn and applying the product rule for differentiation, gives 

Thus a single step of the ATL model may be broken down into L intermediate steps 
corresponding to the intermediate steps of the forward model but in reverse order. 

Note that since L is chosen adaptively, the cost functional and its gradient are dis- 
continuous for those values of xn at which the scheme decides to change the step length. 
This has the potential of causing problems €or the minimization algorithm. On the other 
hand, since the integration scheme monitors the accuracy of the solution, the change in the 
solution resulting from a change in step size is small. In practice, we have encountered no 
problems resulting from the use of an adaptive step-size integration scheme. 

A 

Substituting for .Al gives 

Substituting for %k gives a set of equations for the matrix (a%k/3%).  Denote by 2l  the ith 
element of 2,. Then the ith column of (a&/a%) is given by 

azj,, azj aAj 
a;i a i i  axi 

-+7i - -  - 

- - azo 
a; 

The term afj /a; may be evaluated using the product rule 

This completes the description of the integration scheme for the ATL equations. The values 
of z j ,  Aj and gt generated during the integration of the chemical model must be stored 
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for use later when integrating the ATL equations. In addition to these values, information 
must be stored on the step lengths used in the forward calculation. 

The scheme requires the calculation of the matrices Jj and (aJo/X?,). Code to cal- 
culate these matrices is generated by symbolic differentiation of the chemical equations 
during the code generation step of the model. 
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