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Abstract—This paper describes one vision for future earth ob-
serving systems. New in this vision is the desire for symbiotic
communication to dynamically guide an earth observation
system. An earth observation system which is not just a single
satellite acting on its own but a constellation of satellites, and
sub-orbital platforms such as unmanned aerial vehicles, and
ground observations interacting with computer systems used
for modeling, data analysis and dynamic observation guid-
ance. An autonomous Objectively Optimized Observation
Direction System (OOODS) is of great utility for earth ob-
servation. In particular, to have a fleet of smart assets that can
be reconfigured based on the changing needs of science and
technology. The OOODS integrates a modeling and assimi-
lation system within the sensor web allowing the autonomous
scheduling of the chosen assets and the autonomous provision
of analyses to users. The OOODS operates on generic prin-
ciples that could easily be used in configurations other than
the specific examples described here. Metrics of what we do
not know (state vector uncertainty) are used to define what
we need to measure and the required mode, time and location
of the observations, i.e. to define in real time the observing
system targets. Metrics of how important it is to know this
information (information content) are used to assign a prior-
ity to each observation. The metrics are passed in real time
to the sensor web observation scheduler to implement the ob-
servation plan for the next observing cycle. The same system
could also be used to reduce the cost and development time
in an Observation Sensitivity Simulation Experiment (OSSE)
mode for the optimum development of the next generation of
space and ground-based observing systems.
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1. INTRODUCTION

2004 was the fortieth anniversary of the NASA Nimbus pro-
gram. The Nimbus satellites, first launched in 1964, carried a
number of instruments: microwave radiometers, atmospheric
sounders, ozone mappers, the Coastal Zone Color Scanner
(CZCS), infrared radiometers, etc. Nimbus-7, the last in the
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series, provided significant global data on sea-ice coverage,
atmospheric temperature, atmospheric chemistry (i.e. ozone
distribution), the Earth’s radiation budget, and sea-surface
temperature.

What will the earth observing systems of the future look like?
Autonomy is likely to be a key feature.

2. AUTOMATION ON MANY LEVELS

It is very likely that the observing systems of the future will
increasingly involve the integration of models and data as-
similation systems. Automation will be of great value in both
the direction of observations and for many parts of the asso-
ciated software systems, especially if the observing and anal-
ysis systems are to be dynamically reconfigurable.

Autonomous Observation Direction Systems

A prime area for the application of automation is in the au-
tonomous direction of observations. However, to include au-
tonomy, objective metrics to direct the system are required.
The modeling and assimilation system engineering diagram
for our OOODS system is shown in Figure 1. It is desirable if
generic classes of metrics could be used so that the approach
could be easily applied to many different areas of earth obser-
vation. For example, an autonomous Objectively Optimized
Observation Direction System (OOODS) could use two spe-
cific metrics to perform the optimization for a given sensor
web capability. Firstly, metrics of what we do not know
(state vector uncertainty) can be used to define what we need
to measure and the required mode (i.e. global survey, rapid
scan, step-and-stare or zoom in), and the time and location
of the observations, i.e. to define in real time the observing
system targets. The state vector uncertainty is provided by




























 


























   


 




Figure 1. The modeling and assimilation system engineering
diagram for OOODS.



the integrated data assimilation system. Secondly, metrics of
how important it is to make these observations (information
content) [?] are used to assign a priority to each observation.
The information content is also provided by the integrated as-
similation system. The calculation of both of these metrics is
described below.

These two metrics are then passed in real time to the smart
sensor web observation scheduler that is aware of each assets
observing capabilities to implement the observation plan for
the next observing cycle. The sensor web will typically in-
volve a suite of orbital, sub-orbital, aerial and ground based
assets. The optimum observation schedule information will
depend on the asset. For a satellite instrument it will typically
include, pointing information, viewing mode, and micro win-
dow selection for every part of the next observation cycle. For
unmanned aerial vehicles or aircraft missions it would be an
optimal flight plan (i.e. time and route). For balloon launches
it would be optimal launch time and location.

As an aside, it is worth noting that the same system could also
be used to reduce the cost and development time in an Obser-
vation Sensitivity Simulation Experiment (OSSE) mode for
the optimum development of the next generation of space and
ground-based observing systems.

Parallelization— The shear scale of the task in creating an
autonomous observation direction system has led to the ex-
tensive use of parallelization via the Message Passing In-
terface (MPI). MPI is a computer software standard that al-
lows many computers to communicate with one another. It
is used in computer clusters. In our case, we have used the
free MPICH2 high performance and widely portable imple-
mentation of the MPI-2 standard on a cluster of Mac OS X
machines. MPI was used for both the creation of the mas-
sively parallel modeling and assimilation system and the data
queries. The large data volumes involved have led us to
use a set of automatically synchronized databases which are
queried using massively parallel queries.

Data Biases—The system we have outlined will typically be
fusing data from many sources. In such a situation biases
are ubiquitous. When combining observations from many
sensors over a long time period biases will always be an is-
sue. If they are not dealt with they can hinder us addressing
the scientific issues the measurements were taken to address.
Two companion studies have shown how this issue can be el-
egantly dealt with using neural networks [?], [?]. [?] was
chosen as a NASA Aura mission science highlight.

A complimentary study— to ours [?] describes an adaptive
cyberinfrastructure for real-time multiscale weather forecast-
ing. Currently, scientists generate today’s forecasts on a fixed
time schedule. However, [?] point out that new radar tech-
nologies and improved model physics are enabling on- de-
mand forecasts in response to current weather events. These
forecasts ingest regional atmospheric data in real time and can

consume large computational resources in real time as well.
Two highly complementary projects are developing a hard-
ware and software framework to enable real- time multiscale
forecasting. Collaborative Adaptive Sensing of the Atmo-
sphere and Linked Environments for Atmospheric Discovery
are stand-alone systems that offer distinct benefits to their re-
spective user communities, but when used together, promise
a paradigm shift in atmospheric science research.

Automatic Code Generation

If the observing system is to be dynamically reconfigurable it
is of great use if a high level of automatic code generation is
used in the creation of the model and assimilation system that
will be providing the objective measures used by the OOODS
just described above.

An example of a fully automated code generation and doc-
umentation system that provides this information for atmo-
spheric chemistry is NASA’s AutoChem automatic code gen-
eration (e.g. www.AutoChem.info). AutoChem is an auto-
matic code generator and documentor for atmospheric chem-
istry modeling and assimilation [?], [?]. Given a set of re-
action databases and a user supplied list of required species
it will automatically select the reactions involving those con-
stituents. It then constructs the ordinary differential equation
(ODE) time derivatives, symbolically differentiates the time
derivatives to give the Jacobian, and symbolically differenti-
ates the Jacobian to give the Hessian and the adjoint. It also
documents the whole process in a set of LaTeX and PDF files.
In addition, a huge number of observations of many different
constituents from a host of platforms are available from this
site in an atmospheric chemistry observational database.

AutoChem typically creates in less than a second the mod-
eling and assimilation system that would take approximately
a man year to write by hand. Once the model and assimila-
tion system has been run AutoChem also automatically cre-
ates a cross linked web site for analysis and data mining (e.g.
www.CDACentral.info). The automatic creation of web sites
for data mining of the analyses greatly facilitates the scien-
tific analysis needed to understand and answer major scien-
tific questions, and can be used by policy makers to establish
sound policy decisions, thus increasing the accessibility and
utility of Earth Science data.

AutoChem is being used in the validation and anal-
ysis of results from the NASA Aura platform (e.g.
aura.gsfc.nasa.gov).

Machine Learning

The whole approach described depends in large part on the
integration of a data assimilation system. When considering
data assimilation of atmospheric chemistry, one of the com-
putationally most expensive tasks is the time integration of a
large and stiff set of ordinary differential equations (ODEs).
However, very similar sets of ODEs are solved at adjacent



grid points and on successive days, so similar calculations are
repeated many thousands of times. This is the type of appli-
cation that benefits from adaptive, error monitored, machine-
learning technology. Our ODE solver already employs adap-
tive time stepping with error monitoring, if this is extended
to an adaptive use of machine learning then there are liter-
ally massive potential savings in computational expense. A
prototype code has been developed that we would like to ex-
tend here for use within the ODE solver. Early work seems
promising that such an approach would work [?], [?]. A
success in this area would mean a dramatic reduction in the
computational cost of assimilation and hence of the entire dy-
namic data retrieval control system.

Other Areas of Automation

Automatic parallelization will greatly facilitate the imple-
mentation and automatic adaption of the system for different
problems and its possible use on a variety of hardware. Auto-
matic documentation of both software and data products facil-
itate both code maintenance, and the production and quality
monitoring of self-consistent analyses. The use of automatic
compression can minimize both the required cost of storage
and dissemination, and the required time for electronic prod-
uct transfer/download.

3. RELEVANCY SCENARIOS

We consider two relevancy scenarios, one for immediate ap-
plication, and the other for future systems currently being
designed. However, before considering these scenarios it is
worth noting that GOES-R and all planned geostationary plat-
forms of other agencies such as Eumetsat and NASDA have
an optional rapid scan mode. This enables the assets to scan
a limited region (e.g. of a 1000 km x 1000 km) every minute
if required. Knowing when best to use this rapid scan mode
will be an issue for all these platforms. The methodology de-
scribed here could help autonomously answer this question.

Current Scenario

A practical issue that faces the ongoing long-term NASA
Aura validation effort is deciding the optimum validation bal-
loon launch times. The OOODS described here can ingest
the suite of observations made by NASA Aura and other plat-
forms and produce assimilated constituent analyses. The state
vector uncertainty of the analyses will then be used to define
target regions of large uncertainty. The relative priority of
the different target regions will then be determined using the
information content fields derived from the assimilated anal-
yses. Then by considering the Aura overpasses in the next 24
hours the best launch times and locations will be determined.
It will then automatically send a set of emails to the balloon
launch teams at these sites giving optimum launch times. It
could also provide optimal flight plans for any UAV and air-
craft missions involved in the validation.

Future Scenario

The requirements for the next generation of earth observing
system for air quality are currently being discussed by NASA
and NOAA. Key issues for this observing system will be what
are the spatial scales on which observations are required, what
are the most important constituents to observe and how does
this change spatially and temporally, what are the optimum
observation times for each constituent, and when should in-
strument zoom in, step and stare, rapid scan or global survey
modes be used. The OOODS described here will be of great
utility in autonomously addressing all of these issues. In this
scenario, there is a daily OOODS cycle. As in the scenario
above, the OOODS will ingest the full suite of relevant sensor
web observations made by NASA and other platforms ob-
serving constituents, aerosols, surface reflectivity and cloud
properties. These will be used to produce assimilated con-
stituent analyses. The state vector uncertainty of the analyses
will then be used to define target regions of large uncertainty.
The relative priority of the different target regions will then
be determined using the information content fields derived
from the assimilated analyses. The metrics are then passed
in real time to the system observation scheduler. The sched-
uler will then be able to do the following tasks. Upload to the
satellite instruments involved their observing mode, pointing
information, and (if required) micro window selections for
the next 24 hours. Dispatch the flight plans to any unmanned
aerial vehicles involved. Send emails to sonde and balloon
launch teams giving optimum launch times.

The OOODS components and simulator just described would
also be of use in the context of Observation Sensitivity Simu-
lation Experiments (OSSE). A NASA OSSE capability is cur-
rently being developed by the NASA Research and Analysis
program to determine the optimum configuration of the next
generation of space and ground-based observing systems.

4. CONCLUSION

A vision for future earth observing systems has been de-
scribed where there is symbiotic communication to dynam-
ically guide an earth observation system. Where the earth ob-
serving system is a constellation of satellites, and sub-orbital
platforms such as unmanned aerial vehicles, and ground ob-
servations interacting with computer systems used for mod-
eling, data analysis and dynamic observation guidance. The
earth observing system includes an autonomous Objectively
Optimized Observation Direction System that use metrics of
what we do not know (state vector uncertainty) to define what
we need to measure, and metrics of how important it is to
know this information (information content) to assign a pri-
ority to each observation. The metrics are passed in real time
to the sensor web observation scheduler to implement the ob-
servation plan for the next observing cycle. The same system
automatically creates cross-linked web sites for data mining
and analysis.

The same system could also be used to reduce the cost and



development time in an Observation Sensitivity Simulation
Experiment (OSSE) mode for the optimum development of
the next generation of space and ground-based observing sys-
tems.

More details can also be found in the invited Royal Society
Vision article [?].
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