Impacts of formaldehyde photolysis rates on tropospheric chemistry

1 School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK
2 Atmospheric Chemistry Services, Okehampton, Devon EX20 1FB, UK
3 RSC, Newbury, Berkshire, UK

*Correspondence to: M. C. Cooke, School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK. E-mail: chmcc@bristol.ac.uk

Received: 7 July 2009
Revised: 3 November 2009
Accepted: 11 November 2009

Abstract

A global chemistry transport model is employed to investigate the impact of recent laboratory determinations of photolysis parameters for formaldehyde on concentrations of tropospheric trace gases. Using the new laboratory data, the photolysis of formaldehyde is a more significant removal pathway. HOx levels are increased with the greatest changes towards the top of the troposphere and the poles, making formaldehyde a more significant source of upper tropospheric HOx than previously thought. Global totals of ozone and secondary organic aerosol increase with the rise in ozone being more significant at higher solar zenith angles. Copyright © 2010 Royal Meteorological Society

Keywords: formaldehyde; photolysis; global; modelling; HOx

1. Introduction

Formaldehyde is a ubiquitous constituent of the troposphere that is produced by direct emission from fossil fuel consumption and biomass burning and as a product in the oxidation of volatile organic compounds. Removal from the atmosphere is via reaction with the hydroxyl radical (OH) \(\cdot \)(298 K) = 8.5 \times 10^{-12} \text{ cm}^{2} \text{ molecule}^{-1} \text{ s}^{-1} \) (Sander et al., 2006), the nitrate radical \((\text{NO}_3) \cdot \)(298 K) = 5.8 \times 10^{-16} \text{ cm}^{3} \text{ molecule}^{-1} \text{ s}^{-1} \) (Sander et al., 2006)) and photolysis reactions (1) and (2):

\[
\text{HCHO} + \text{hv} \rightarrow \text{H}_2 + \text{CO} \quad (1)
\]

\[
\text{HCHO} + \text{hv} \rightarrow \text{H} + \text{HCO} \quad (2)
\]

Once formed, HCO reacts rapidly with \(\text{O}_3 \) to give the hydroperoxo radical \((\text{HO}_2) \) and \(\text{CO} \), and \(\text{H} \) reacts with \(\text{O}_2 \) to give \(\text{HO}_2 \). Reactions of \(\text{HO}_2 \) with \(\text{O}_3 \) and \(\text{NO} \) result in the formation of \(\text{OH} \). Formaldehyde is thought to be a major source of \(\text{OH} \) at high-solar zenith angles because of the longer wavelength threshold of the radical channel relative to the photolysis of \(\text{O}_3 \). Formaldehyde is also of interest as a source of \(\text{HO}_2 \) and \(\text{OH} \) (usually collectively referred to as odd \(\text{OHs} \) or \(\text{HO}_x \)) in the upper troposphere (UT) (Logan et al., 1981). Over the past decade it has emerged that measured \(\text{HO}_x \) in the UT exceeds that predicted by models and that a range of \(\text{HO}_x \) precursors may contribute to this discrepancy. Such precursors include formaldehyde, alkyl peroxides, acetone and isoprene derivatives that are thought to be transported from lower altitudes (Brune, 1998; Collins et al., 1999; Crawford et al., 1999; Colomb et al., 2006; Fried et al., 2008; Jaegle et al., 2001). These studies have indicated the importance of deep tropical convection and convection from the marine boundary layer on the UT \(\text{HO}_x \) budget.

Formaldehyde is a key precursor, being formed from the degradation of most hydrocarbons and any substantial change in photolysis parameters may have a non-negligible impact on UT \(\text{HO}_x \). The current recommended formaldehyde absorption cross-sections \(\sigma (\lambda) \) by the NASA-JPL panel (Sander et al., 2006) and the IUPAC panel (Atkinson et al., 2006) were determined at a resolution of \(\sim 0.025 \text{ nm} \) by Meller and Moortgat (2000). Measurements at a spectral resolution of 0.0032 nm have been conducted by Smith et al. (2006) showing a greater peak of formaldehyde cross-section in the range 300–340 nm. Direct detection of the HCO radical has been conducted by Gorrotxategi Carbajo et al. (2008) allowing for absolute quantum yield \(\Phi (\lambda) \) determination for the radical channel of photolysis. These studies thus provide improved quantification of the parameters, which determine the atmospheric photolysis rate of formaldehyde, and which are likely to influence the NASA-JPL and IUPAC recommendations. In the current study a global chemistry transport model (CTM) is used to investigate the impact of these new photolysis measurements.

2. Model and simulations

The model used is an updated version of the UK Meteorological Office tropospheric CTM (STOCHM)
described by Collins et al. (1997), with updates reported in detail in the recent paper of Utembe et al. (2009a). STOCHEM is a global three-dimensional CTM, which uses a Lagrangian approach to advect 50,000 air parcels using a fourth-order Runge-Kutta scheme with advection time steps of 3 h. The transport and radiation models are driven by archived meteorological data, generated by the Met office numerical weather prediction models as analysis fields with a resolution of 1.25° longitude and 0.83° latitude and on 12 vertical levels extending to 100 hPa. The model of Derwent et al. (2008) has been employed with updates to the photochemical mechanism and surface emissions as described below.

The chemistry employed is the most reduced version of the common representative intermediate mechanism (CRIV2-R5) (Jenkin et al., 2008; Watson et al., 2008; Utembe et al., 2009b), which represents the chemistry of methane and 22 emitted non-methane hydrocarbons. Each parcel contains the concentrations of 219 species involved in 618 photolytic, gas phase and heterogeneous chemical reactions, with a 5-min chemistry time step. There are also 14 species representing the formation of secondary organic aerosol (SOA), which are derived from the oxidation of aromatic hydrocarbons, monoterpenes and isoprene (Utembe et al., 2009b).

The surface emissions (man-made, biomass burning, vegetation, oceans, soil and ‘other’ surface emissions) are distributed using two-dimensional source maps. Emission totals for CO, NOx and non-methane hydrocarbons are taken from the Precursor of Ozone and their Effects in the Troposphere (POET) inventory (Granier et al., 2005). The emissions of aromatic species ortho-xylene, benzene and toluene were taken from Henze et al. (2008). Biomass burning emissions of ethyne, formaldehyde and acetic acid were produced using scaling factors from Andreae and Merlet (2001) per mole of CO emitted. NASA inventories are used for aircraft NOx emissions for 1992 taken from Penner et al. (1999). The lightning and aircraft NOx emissions are monthly averages and are three-dimensional in distribution.

Three runs were performed to investigate the effect of formaldehyde photolysis on atmospheric trace gases. The only differences between the three runs were the choice of source data for the photolysis cross-sections and quantum yields for formaldehyde. The first two runs used data from NASA-JPL recommendations in 1992 (DeMore, 1992) and 2006 (Sander et al., 2006). The third-run used data from Sander et al. (2006), but substituted with the data of Gorrotxategi Carbajo et al. (2008) and Smith et al. (2006) over the wavelength range from 300 to 330 nm. These runs will subsequently be referred to as JPL92, JPL06 and CarJPL06, respectively. Each model run was performed for 24 months with the first 12 months being a spin-up.

Table I. Percentage removal of HCHO from the troposphere.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>JPL92 (%)</th>
<th>JPL06 (%)</th>
<th>CarJPL06 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hv (radical)</td>
<td>23.2</td>
<td>33.5</td>
<td>38.1 (+4.6)</td>
</tr>
<tr>
<td>hv (molecular)</td>
<td>37.7</td>
<td>28.5</td>
<td>25.3 (+3.2)</td>
</tr>
<tr>
<td>OH</td>
<td>39.1</td>
<td>37.9</td>
<td>36.6 (-1.3)</td>
</tr>
<tr>
<td>NO2</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Values in brackets indicate the changes between JPL06 and CarJPL06.

3. Results

Table I shows the tropospheric removal routes of formaldehyde and the proportion of each route for the three global simulations. The experimental data have developed considerably between 1992 and 2006. JPL reports because of higher resolution cross-section measurements and more accurate techniques for evaluating the quantum yield. This development has resulted in the radical channel of photolysis being recognised as a more important removal route (23.2–33.5%) with the overall removal by photolysis also being more significant (60.9–62.0%).

The remainder of the discussion will look at the differences between the current recommended values by Sander et al. (2006) (run JPL06) and the incorporation of the data of Gorrotxategi Carbajo et al. (2008) (run CarJPL06). A high-resolution UV radiation model was used by Gorrotxategi Carbajo et al. (2008) to calculate J(HCO) increases of 25–30 (+15%) between 300 and 330 nm. Table I shows that the radical channel has become a more significant removal route (increase of 4.6%), and overall photolysis is a more dominant removal process (62.0–63.4%). The increased importance of the radical channel results in an increase in the concentration of both HO2 and OH, with the later increasing by 1.5% on a globally averaged basis (Table II). The increase in OH causes the emitted VOCs and CO to be removed more rapidly from the troposphere thus the concentration of these species has reduced on a global scale, as presented in Table II.

Table II. The mass and percentage changes for some of the main species.

<table>
<thead>
<tr>
<th>Compound</th>
<th>GB (JPL06) – GB (CarJPL06) (Gg)</th>
<th>GB % change</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>-2.57×10^3</td>
<td>-0.74</td>
</tr>
<tr>
<td>O2</td>
<td>8.14×10^3</td>
<td>0.03</td>
</tr>
<tr>
<td>H2</td>
<td>-3.52×10^4</td>
<td>-2.50</td>
</tr>
<tr>
<td>OH</td>
<td>3.88×10^{-3}</td>
<td>1.41</td>
</tr>
<tr>
<td>HO2</td>
<td>6.69×10^{-1}</td>
<td>2.51</td>
</tr>
<tr>
<td>HCHO</td>
<td>-4.42×10^1</td>
<td>-4.49</td>
</tr>
<tr>
<td>NOx</td>
<td>-1.97×10^{-3}</td>
<td>-3.29</td>
</tr>
<tr>
<td>CH4</td>
<td>-8.0×10^3</td>
<td>-0.21</td>
</tr>
<tr>
<td>C2H6</td>
<td>-1.73×10^1</td>
<td>-1.28</td>
</tr>
<tr>
<td>C2H6</td>
<td>-1.77×10^0</td>
<td>-2.02</td>
</tr>
<tr>
<td>C2H8</td>
<td>-2.48×10^0</td>
<td>-1.61</td>
</tr>
<tr>
<td>C2H6</td>
<td>-1.19×10^{-1}</td>
<td>-1.04</td>
</tr>
<tr>
<td>SOA</td>
<td>5.00×10^0</td>
<td>2.74</td>
</tr>
</tbody>
</table>

Note: Global burden (GB) and the mass values quoted are a yearly mean in gigagrams.
The global concentration of H\textsubscript{2} (Table II) has reduced because of faster removal by OH and slower production via the molecular channel of HCHO photolysis. SOA produced by the partitioning of low-volatility products (Utembe et al., 2009b) has increased overall because of their more efficient production from the oxidation of the precursor VOCs (isoprene, monoterpenes and aromatics). The percentage change in SOA is worthy of note, however, this magnitude of change is within the uncertainty of the representation. The formaldehyde concentration has been reduced on a global scale (Table II). The increased production from VOCs is balanced by the increased removal through reaction with OH. The increased photolysis on top of this thus leads to net removal of formaldehyde.

The changes, as percentages, in reaction flux for the radical channel as a zonal average are shown in Figure 1(a). This figure exhibits a vertical gradient, with the rate of reaction reducing with increasing altitude. As the VOC sources of HCHO are from the surface, a higher level of HCHO is expected at lower altitudes. As a result of the new photochemical data, HCHO is removed more rapidly from the atmosphere by faster photolysis. Therefore, the relative decrease in HCHO concentration is greatest at the top of the model domain (Figure 1(b)) and thus the rate of each photolysis reaction is reduced most at the top of the domain. This manifests itself as a reduction in the percentage increase with altitude for the radical channel. The molecular channel has a reduced flux overall with the greatest reduction in flux at the top of the troposphere. In the UT, the flux in the radical channel has increased most towards the poles because the higher wavelength threshold of the radical channel is more significant at higher solar zenith angles.

The global ozone concentration only changes by 0.03\% (Table I). However, the plotted data in Figure 2(a) show that the increase in ozone in February over polluted regions is between 0.8 and 1.2 ppb between runs. February is used as a representative of a winter month in the northern hemisphere where there are shorter hours of daylight and higher solar...
zenith angles relative to summer. HO\textsubscript{2} is predominantly produced when OH is oxidised by VOCs and via the photolysis of formaldehyde. At higher solar zenith angles, formaldehyde plays a more important role in HO\textsubscript{2} production relative to OH oxidation. The increased importance of the radical channel (run CAR-JPL06) of photolysis results greater in HO\textsubscript{2} production. Ozone is produced because of an increase in HO\textsubscript{2} via reactions (3–5).

\[\text{HO}_2 + \text{NO} \rightarrow \text{NO}_2 + \text{OH} \]
\[\text{NO}_2 + \text{hv} \rightarrow \text{NO} + \text{O}(\text{^3P}) \]
\[\text{O}(\text{^3P}) + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M} \]

The increase in ozone ranging from 0.8 to 1.2 ppb is not observed in the summer months because the HO\textsubscript{2} production is dominated by OH oxidation. Therefore, the effect of formaldehyde on ozone production is greatest in the winter months with its significance gradually declining as summer approaches.

Figure 2(b) shows the zonal profile for the change in HO\textsubscript{3} concentration. HO\textsubscript{3} levels are increased most towards the top of the model. The largest increase in HO\textsubscript{3} at the ground level is in the northern mid to high latitudes between 40–90°N and 75–90°S in the southern hemisphere, with a change between 3 and 4%. The northern hemisphere has a greater change in HO\textsubscript{3} because the emissions of HCHO precursors from anthropogenic sources are greatest between 30 and 60°N. The largest increase at the top of the troposphere is towards the poles, because HO\textsubscript{3} production from HCHO is more significant at high-solar zenith angles. Overall, in the UT, there is an increase of 6% for HO\textsubscript{2} and 5% for OH. These are modest changes, but are in keeping with the idea that several precursors contribute to the HO\textsubscript{3} discrepancies between models and measurements. Of the HO\textsubscript{3} produced by acetone, alkyl peroxides and formaldehyde in the top level of the model approximately 85% is produced via formaldehyde photolysis. However, it must be made clear that acetone and some of the alkyl peroxides are oxidised to formaldehyde in the photolytic mechanism and contribute to this 85%. The remaining 15% of HO\textsubscript{3} from these sources is via direct production from ROO\textsubscript{2} photolysis and from acetone prior to formaldehyde formation.

As a result of the changes in the formaldehyde \textit{J}-values, a significant decrease was noted in the photochemical source strength for H\textsubscript{2} and subsequently in its global burden. Apart from direct emissions, photochemical production is the largest source term for this trace gas Simmons et al. (2000).

4. Measurement comparison

Figure 3 shows the model and measurement data for the vertical profiles of the OH, hydroperoxy radical and formaldehyde off the coast of China during Trace-P. These measurements are for one aircraft campaign but give an indication of the significance of the updated photolysis parameters. The model is capable of recreating the vertical profile observed in these measurements and most values fall within the measurement error bars. The OH and HO\textsubscript{2} have increased most significantly towards the top of the model, 12 km and higher, moving the model closer to the mean of the measurements. The reductions in formaldehyde also move the model closer to the measured values. Figure 3 clearly shows that the formaldehyde photolysis data are not the major cause of discrepancies between model and measurements with regards to UT HO\textsubscript{3}, however, it is a worthy update to current CTMs.

5. Conclusions

A global tropospheric CTM has been used to explore the changes in tropospheric trace gases resulting from recently reported photochemical parameters for
formaldehyde photolysis. We performed three simulations using formaldehyde photochemical data from DeMore (1992), Sander et al. (2006) and Gorrotxategi Carbajo et al. (2008). The percentages of formaldehyde removal via photolysis are calculated to be 60.9, 62.0 and 63.4%, respectively. The branching to the hyde removal via photolysis increase in ozone mixing ratios over the most polluted areas of higher solar zenith angles, there is a 0.8- to 1.2-ppb increase by 0.03%. Ozone over polluted areas of Colombia A, Williams J, Crowley J, Gros V, Hofmann R, Salisbury G, Collins WJ, Stevenson DS, Johnson CE, Derwent RG. 1999. Role of biomass burning.

Collins et al. (2008) calculated that the increased HOx radicals in the upper troposphere lead to a faster destruction of VOCs, with decreases of 0.21, 2.02 and 1.61% in global mixing ratios of methane, benzene and isoprene, respectively. Globally, the computed ozone levels increase by 0.03%. Ozone over polluted areas of the northern hemisphere is found to be relatively unaffected in July and August. However, during February, as shown in Figure 2(a), when there are longer periods of high solar zenith angles, there is a 0.8- to 1.2-ppb increase in ozone mixing ratios over the most polluted areas.

Acknowledgements

This work was supported by EPSRC with studentship number CHEM.SB1729.6525 for MCC; UK Natural Environmental Research Council (NERC) support for SRU is gratefully acknowledged through Grant NE/D001846/1, as part of the QUEST Deglaciation project; ATO thanks the Met. Office and GWR for funding and PGC acknowledges financial support from the Marie Curie EU project BREATHE (MEST-CT-2004-514499). AJOE thanks the Royal Society and Wolfson Foundation for a Research Merit Award. The formaldehyde photochemical data were obtained with support from NERC Grants NER/T/S/2000/00294 and NE/D001498/1. The development of STOCHEM was supported by UK Defra under their SSNIP Contract AQ0902 to RGD.

References

