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Satellite Observations Meteorological Analyses Population Density In-situ observationsSocial Media

Multiple 
Big Data 
Sets transferred
over High Speed
Networks

Combined Using 
Machine Learning
to Provide a 
High-Resolution
Global Products

Combined with Electronic Health Records to provide:
1. Real time personal health alerts
2. Physician Decision Support Tools
3. Logistical Planning for Emergency Rooms
4. Improved Policy Decisions

Next Generation of High Speed Networks to Facilitate the 
Next Generation of Proactive Smart Health Care Applications

Veteran’s Administration
Country’s Largest Health Care Provider

Requires ultra-low latency gigabit to the end user

Local cloud computing coupled with widely distributed national and global sensor networks

Multiple global high-resolution datasets

Prof. David Lary

Air Quality



Next Generation of High Speed Low latency Networks to Facilitate the 
Next Generation of Smart Fire Detection & Water Conservation Applications

Requires ultra-low latency wireless gigabit for very-high resolution hyperspectral video imagery for real time flight control of aerial vehicles

11 drought-ridden western and central states have just 
been declared as primary natural disaster areas seriously 
threatening US food security. Further, every year between 
$1 and $2 billion dollars are spent on fire suppression 
costs alone.

A fleet of low cost aerial vehicles working together 
autonomously utilizing uncompressed very-high 
resolution hyperspectral video imagery. The geo-tagged 
imagery is streamed using high-speed low-latency wireless 
networks to communicate to a powerful cloud computing 
cluster running machine learning and image processing 
algorithms for real time direction of the optimal flight 
patterns, and the delivery of early warning for timely 
interventions.

Fire:  Appropriate preemptive fire prevention can lead to 
massive savings in fire control costs, loss of life, and 
property damage.

Agriculture:  Appropriate and timely early warning of 
crop infestations, infections and/or water stress can 
prevent massive avoidable losses.

Prof. David Lary

20 lb Airborne 385 channel 
hyperspectral imaging system



Next Generation of High Speed Networks to Facilitate the 
Next Generation of Smart Water Management Applications

With Drought Disaster Declarations in 11 western and central 
states, smart water management is now more critical than ever 
for sustainable water conservation and US Food Security. 
Coupling high resolution remote sensing from satellites, with 
machine learning, and the next generation of high speed low 
latency networks is facilitating the next generation of smart 
water management systems. These systems will benefit 
individual home owners, farmers, corporate campuses, golf 
courses, etc. and allow optimum monitoring and control of 
irrigation using mobile devices.

Sports fields

blown valves lead to flooding

uneven irrigation

Prof. David Lary



Combine historical track issue data 
and historical high resolution 
meteorological data with machine 
learning.

Combine Multiple Datasets



Hyperspectral data cube

Hyperspectral data can give 
insights into the state of the 
ballast and surrounding ground.

Hyperspectral Data



20 lb Airborne hyperspectral imaging system
385 channels between 400-1,700 nm 

Hyperspectral data cube





Satellite Images can be used 
to automate the highlighting of 
vegetation near the tracks

Highlight Vegetation



1

Routine satellite acquisition of 
multispectral and SAR imagery

2

Periodic high resolution ground 
truth from aerial surveys

3

Image processing & Machine Learning

BNSF Decision Support

4

The synergy between routine satellite imagery, 
periodic high resolution ground truth surveys and 
automated machine learning and image processing is 
a powerful combination for decision support.

Preparing for Routine Decision Support

THRIVE 
TRACK HEALTH INDICATORS USING REMOTE & IN-SITU 

OBSERVATIONS FOR THE VITALITY OF THE ENVIRONMENT



Using Zero-Emission Aerial 
Vehicles in Support of the 

ACE Mission
Hanson Center for Space Sciences 

Prof. David Lary

Wearable Sensors
Vehicle Measurements

IoT
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Objective

Key MilestonesApproach

Using Zero Emission Aerial Vehicles in Support of ACE

Major tasks include:
• Characterize surface variability of aerosol size distribution and 

abundance across the ACE footprint (250 m resolution) using a Grimm 
Model 1.109 Aerosol Spectrometer & 1.320 Nano Check and a full 
weather station measuring temperature, pressure, humidity, dew point, 
and wind speed and direction

• Integrate the Grimm Spectrometers and full weather station into the 
model aircraft

• Fly at a range of locations and times to demonstrate the ability to 
characterize the aerosol size distribution and vertical profiles in the 
boundary layer in the 100 m closest to the surface

None

PI: David Lary, University of Texas - Dallas

Co-Is/Partners

Address a key gap in existing validation capabilities for ACE by measuring 
the size distribution and vertical profiles in the boundary layer in the 
100m closest to the surface using a small aerial vehicle. The project will
• Demonstrate feasibility of using zero emissions remote control 

aircraft for satellite validation 
• Determine if a key gap in existing validation capabilities for the 

Aerosols, Cloud systems, ocean Ecosystems (ACE) can be filled with 
this technology

• Develop proper size distribution and vertical profiles of aerosols in the 
boundary layer 100m closest to the surface for ACE mission

TRLin = 5

The model aircraft is equipped with a full suite of meteorological instruments for temperature, pressure, humidity, wind 
speed and direction as well as an EPA certified Grimm Model 1.109 Aerosol  Spectrometer & 1.320 Nano Check which 

provides extremely precise size distributions within the size range 12 nm - T 32 µm in 43 size channels.

AIST-QRS-13-0004

TRLcurrent = 5

•Characterize*surface*variability*of*aerosol*size*distribu4on*and*
abundance*across*the*ACE*footprint

8/14

•Integrate*aerosol*spectrometer*into*the*model*aircra@ 10/14

•Fly*at*a*range*of*loca4ons*and*4mes*to*demonstrate*the*ability*to*

characterize*the*aerosol*size*distribu4on*and*ver4cal*profiles
6/15



Flight*Photos



Flight*Photos



Accomplishments
To the best of our knowledge the first time the full sub-
pixel aerosol size distribution has been 
characterized at high spatial resolution (sub meter) 
and high temporal resolution (every second) using:

• A zero emission, low cost, electric remote control 
model aircraft at multiple vertical levels in the lower 
most 100 m of the atmosphere.

• A car driving daily across a 10 km pixel over an 
extended period. 

Satellite Pixel

Full Aerosol Size Distribution



Flight*on*Nov*18,*2014*clear*skies Flight*on*Dec*04,*2014*hazy/overcast

Japan USA WHO/EU
Annual&Avg.&: 15μg/m3 Annual&Avg.&: 12μg/m3 Annual&Avg.&: 25μg/m3&

24&hour&Avg.&: 35μg/m3& 24&hour&Avg.&: 35μg/m3& Annual&Avg.&:20μg/m3&

PM2.5*Air*Quality*Standards

Day*within*EPA*Air*Quality*Standards Day*with*exceedance*of*EPA*Air*Quality*Standards
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Small scale variability in 
the horizontal & 

vertical





December 4, 2014



Spatial Variability Across A Satellite Pixel



Spatial Variability Across A Satellite Pixel





Unprecedented levels of air pollution in Singapore and Malaysia in June led to respiratory illnesses, school closings, and 
grounded aircraft.  This year it was so bad that in some affected areas there was a 100 percent rise in the number of asthma 
cases, and the government of Malaysia distributed gas masks.

MODIS  Aqua July 21, 2013.

David Lary



Air pollution in Ulaanbaatar, Mongolia



PM2.5 Invisible Killer
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! 5!

Table!1.!PM!and!health!outcomes!(modified!from!Ruckerl*et*al.!(2006)).!

!!
Health*Outcomes!

Short9term*Studies* Long9term*Studies*
PM10! PM2.5! UFP! PM10! PM2.5! UFP!

Mortality* !! !! !! !! !! !!

!!!!All!causes! xxx!! xxx!! x! xx! xx! x!
!!!!Cardiovascular! xxx! xxx! x!! xx! xx! x!

!!!!Pulmonary! xxx! xxx! x! xx! xx! x!
Pulmonary!effects! !! !! !! !! !! !!

!!!!Lung!function,!e.g.,!PEF! xxx! xxx! xx! xxx! xxx! !!
!!!!Lung!function!growth! !! !! !! xxx! xxx! !!

Asthma!and!COPD!exacerbation! !! !! !! !! !! !!

!!!!Acute!respiratory!symptoms! !! xx! x! xxx! xxx! !!
!!!!Medication!use! !! !! x! !! !! !!

!!!!Hospital!admission! xx! xxx! x! !! !! !!
Lung!cancer! !! !! !! !! !! !!

!!!!Cohort! !! !! !! xx! xx! x!

!!!!Hospital!admission! !! !! !! xx! xx! x!
Cardiovascular!effects! !! !! !! !! !! !!

!!!!Hospital!admission! xxx! xxx! !! x! x! !!
ECG@related!endpoints! !! !! !! !! !! !!

!!!!Autonomic!nervous!system! xxx! xxx! xx! !! !! !!
!!!!Myocardial!substrate!and!vulnerability! !! xx! x! !! !! !!

Vascular!function! !! !! !! !! !! !!

!!!!Blood!pressure! xx! xxx! x! !! !! !!
!!!!Endothelial!function! x! xx! x! !! !! !!

Blood!markers! !! !! !! !! !! !!
!!!!Pro!inflammatory!mediators! xx! xx! xx! !! !! !!

!!!!Coagulation!blood!markers! xx! xx! xx! !! !! !!

!!!!Diabetes! x! xx! x! !! !! !!
!!!!Endothelial!function! x! x! xx! !! !! !!

Reproduction! !! !! !! !! !! !!
!!!!Premature!birth! x! x! !! !! !! !!

!!!!Birth!weight! xx! x! !! !! !! !!
!!!!IUR/SGA! x! x! !! !! !! !!

Fetal!growth! !! !! !! !! !! !!

!!!!Birth!defects! x! !! !! !! !! !!
!!!!Infant!mortality! xx! x! !! !! !! !!

!!!!Sperm!quality! x! x! !! !! !! !!
Neurotoxic!effects! !! !! !! !! !! !!

!!!!Central!nervous!system!! !! x! xx! !! !! !!
x, few studies; xx, many studies; xxx, large number of studies. 



Hourly Measurements from 55 countries and more than 8,000 measurement sites from 1997-present



Virtual Sensors

Comes out of CAL/VAL
Inter-Instrument Inter Comparison



REMOTE SENSING, MACHINE LEARNING AND PM2.5 4

Random Forests, etc.) that can provide multi-variate non-linear
non-parametric regression or classification based on a training
dataset. We have tried all of these approaches for estimating
PM2.5 and found the best by far to be Random Forests.

B. Random Forests
In this paper we use one of the most accurate machine learn-

ing approaches currently available, namely Random Forests
[53], [54]. Random forests are composed of an ensemble of
decision trees [55]. Random forests have many advantages
including their ability to work efficiently with large datasets,
accommodate thousands of input variables, provide a measure
of the relative importance of the input variables in the re-
gression, and effectively handling datasets containing missing
data.

Each tree in the random forest is a decision tree. A decision
tree is a tree-like graph that can be used for classification
or regression. Given a training dataset, a decision tree can
be grown to predict the value of a particular output variable
based on a set of input variables [55]. The performance
of the decision tree regression can be improved upon if,
instead of using a single decision tree, we use an ensemble
of independent trees, namely, a random forest [53], [54]. This
approach is referred to as tree bootstrap aggregation, or tree
bagging for short.

Bootstrapping is a simple way to assign a measure of ac-
curacy to a sample estimate or a distribution. This is achieved
by repeatedly randomly resampling the original dataset to
provide an ensemble of independently resampled datasets.
Each member of the ensemble of independently resampled
datasets is then used to grow an independent decision tree.

The statistics of random sampling means that any given tree
is trained on approximately 66% of the training dataset and
so approximately 33% of the training dataset is not used in
training any given tree. Which 66% is used is different for
each of the trees in the random forest. This is a very rigorous
independent sampling strategy that helps minimize over fitting
of the training dataset (e.g. learning the noise). In addition, in
our implementation we keep back a random sample of data not
used in the training for independent validation and uncertainty
estimation.

The members of the original training dataset not used in a
given bootstrap resample are referred to as out of bag for
this tree. The final regression estimate that is provided by
the random forest is simply the average of the ensemble of
individual predictions in the random forest.

A further advantage of decision trees is that they can provide
us the relative importance of each of the inputs in constructing
the final multi-variate non-linear non-parametric regression
model (e.g. Tables II and III).

C. Datasets Used in Machine Learning Regression
1) PM2.5 Data: As many hourly PM2.5 observations

as possible that were available from the launch of Terra
and Aqua to the present were used in this study. For
the United States this data came from the EPA Air
Quality System (AQS) http://www.epa.gov/ttn/airs/airsaqs/

TABLE II
VARIABLES USED IN THE MACHINE LEARNING ESTIMATE OF PM2.5 FOR
THE MODIS COLLECTION 5.1 PRODUCTS FOR THE TERRA AND AQUA
DEEP BLUE ALGORITHM SORTED BY THEIR IMPORTANCE. THE MOST

IMPORTANCE VARIABLE FOR A GIVEN REGRESSION IS PLACED FIRST WITH
A RANK OF 1.

Terra DeepBlue

Rank Source Variable Type

1 Population Density Input
2 Satellite Product Tropospheric NO2 Column Input
3 Meteorological Analyses Surface Specific Humidity Input
4 Satellite Product Solar Azimuth Input
5 Meteorological Analyses Surface Wind Speed Input
6 Satellite Product White-sky Albedo at 2,130 nm Input
7 Satellite Product White-sky Albedo at 555 nm Input
8 Meteorological Analyses Surface Air Temperature Input
9 Meteorological Analyses Surface Layer Height Input
10 Meteorological Analyses Surface Ventilation Velocity Input
11 Meteorological Analyses Total Precipitation Input
12 Satellite Product Solar Zenith Input
13 Meteorological Analyses Air Density at Surface Input
14 Satellite Product Cloud Mask Qa Input
15 Satellite Product Deep Blue Aerosol Optical Depth 470 nm Input
16 Satellite Product Sensor Zenith Input
17 Satellite Product White-sky Albedo at 858 nm Input
18 Meteorological Analyses Surface Velocity Scale Input
19 Satellite Product White-sky Albedo at 470 nm Input
20 Satellite Product Deep Blue Angstrom Exponent Land Input
21 Satellite Product White-sky Albedo at 1,240 nm Input
22 Satellite Product Scattering Angle Input
23 Satellite Product Sensor Azimuth Input
24 Satellite Product Deep Blue Surface Reflectance 412 nm Input
25 Satellite Product White-sky Albedo at 1,640 nm Input
26 Satellite Product Deep Blue Aerosol Optical Depth 660 nm Input
27 Satellite Product White-sky Albedo at 648 nm Input
28 Satellite Product Deep Blue Surface Reflectance 660 nm Input
29 Satellite Product Cloud Fraction Land Input
30 Satellite Product Deep Blue Surface Reflectance 470 nm Input
31 Satellite Product Deep Blue Aerosol Optical Depth 550 nm Input
32 Satellite Product Deep Blue Aerosol Optical Depth 412 nm Input

In-situ Observation PM2.5 Target

Aqua DeepBlue

Rank Source Variable Type

1 Satellite Product Tropospheric NO2 Column Input
2 Satellite Product Solar Azimuth Input
3 Meteorological Analyses Air Density at Surface Input
4 Satellite Product Sensor Zenith Input
5 Satellite Product White-sky Albedo at 470 nm Input
6 Population Density Input
7 Satellite Product Deep Blue Surface Reflectance 470 nm Input
8 Meteorological Analyses Surface Air Temperature Input
9 Meteorological Analyses Surface Ventilation Velocity Input
10 Meteorological Analyses Surface Wind Speed Input
11 Satellite Product White-sky Albedo at 858 nm Input
12 Satellite Product White-sky Albedo at 2,130 nm Input
13 Satellite Product Solar Zenith Input
14 Meteorological Analyses Surface Layer Height Input
15 Satellite Product White-sky Albedo at 1,240 nm Input
16 Satellite Product Deep Blue Surface Reflectance 660 nm Input
17 Satellite Product Deep Blue Surface Reflectance 412 nm Input
18 Satellite Product White-sky Albedo at 1,640 nm Input
19 Satellite Product Sensor Azimuth Input
20 Satellite Product Scattering Angle Input
21 Meteorological Analyses Surface Velocity Scale Input
22 Satellite Product Cloud Mask Qa Input
23 Satellite Product White-sky Albedo at 555 nm Input
24 Satellite Product Deep Blue Aerosol Optical Depth 550 nm Input
25 Satellite Product Deep Blue Aerosol Optical Depth 660 nm Input
26 Satellite Product Deep Blue Aerosol Optical Depth 412 nm Input
27 Meteorological Analyses Total Precipitation Input
28 Satellite Product White-sky Albedo at 648 nm Input
29 Satellite Product Deep Blue Aerosol Optical Depth 470 nm Input
30 Satellite Product Deep Blue Angstrom Exponent Land Input
31 Meteorological Analyses Surface Specific Humidity Input
32 Satellite Product Cloud Fraction Land Input

In-situ Observation PM2.5 Target

detaildata/downloadaqsdata.htm and AirNOW http://www.
airnow.gov. In Canada the data came from http://www.
etc-cte.ec.gc.ca/napsdata/main.aspx. In Europe the data came
from AirBase, the European air quality database main-
tained by the European Environment Agency and the Euro-



Long-Term Average 1997-present

Wearable Sensors
Mobile Sensors



Four Corners Power Plants

Sonoran Dessert
Los Angeles Area

Central Valley

Common Fire Area
Close Ups Showing Good Agreement With Observations

Alaska

(a)

(b) (c)

(d)

Great Salt Lake Desert



This is a BigData Problem of 
Great Societal Relevance

• Collecting data in real time from national and 
global networks requires bandwidth.

• With the next generation of wearable sensors and 
the internet of things this data volume will 
rapidly increase.

• A variety of applications enabled by BigData, 
higher bandwidth and cloud processing.

• Future finer granularity and two way 
communication will dramatically increase the size 
of the data bringing air quality to the micro scale, 
just like weather data.

Time Taken
10 Mbps 20 Mbps 50 Mbps 1 Gbps

40 TB training data
4 Gb update

185 days 93 days 37 days 1 day 21 hours
54m 27m 11m 32s





Automated traffic patterns, 
driverless cars routing



38

VA Decision Support Tools

More Than 40 Data Products from In-situ Observations, NASA Earth Observations, Earth System 
Models, Population Density & Emission Inventories 

Personalized Alerts Dr. Watson
Staffing & Resource 

Management

Machine Learning

Daily Global Air 
Quality Estimates

NASA Earth 
Observation Data

NASA Earth System 
Model Products

Population Density and 
Other Related Products

ER Admissions
All ICD Codes

All Prescriptions

Machine 
Learning

Machine 
Learning

THRIVE Medical 
Environment Analytics 

Engine



Happy Day!





Street View
Pollution View



Think Big: Holistic & Comprehensive Informatics

Bio'Informa$cs

Medical'Informa$cs

Environmental'Informa$cs

THRIVE
Mul$ple'Big'Data'+'EMR'+'Social'Media'+'Machine'Learning'+'Causality
A*CrossTcuUng*PlaVorm*for*Comprehensive*Informa4cs*for*Data/Driven/Decisions*in*Pa8ent/
Centered/Care*facilitated*by*High%Speed%Low-Latency%networks,*mul4ple*massive*datasets*from*

large*distributed*sensor*networks,*EMR,*and*local%cloud%compu:ng.



High Resolution Identification of 
Dust Sources Using Machine 

Learning and Remote Sensing Data
Annette Walker and David J. Lary

A42A-08



NRL High-resolution Dust Source Database

20030820 NRL DEP20030820 NRL DEP

Iran

Pakistan

Iran

Pakistan

• 10 years of DEP (2 yr MSG/RGB) imagery
• COAMPS 10 m wind overlays 
• Surface weather plots 
• ENVI (Gis-like software)
• NGDC topographical 10ºX10º tiles
• Overlay 0.25º grid or use Google Earth (GE)

• Dust source area entered into database
   (cursor location tool = 1km precision)
• Cross-correlate land and water features
   using maps, atlases, Landsat images
   (detailed topographic, geographic, 
    and geomorphic information, GE) 
• Technical and governmental reports

Approach and Methodology

20110630 NRL MSG/RGB

Saudi 
Arabia

20030820 MODIS True Color
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NRL High-resolution Dust Source Database

Solid red and purple shapes identify dust source 
areas located using DEP and MSG.

SW Asia DSD East Asia DSD

Mongolia

Saudi 
Arabia



Self-Organizing Map
SOMs reduce dimensionality by 
producing a map that objectively plots 
the similarities of the data by grouping 
similar data items together. 

SOMs learn to classify input vectors 
according to how they are grouped in 
the input space. 

SOMs learn both the distribution and 
topology of the input vectors they are 
trained on. This approach allows SOMs 
to accomplish two things, reduce 
dimensions and display similarities.



Detecting Dust Sources



Detecting Dust Sources



Self Organizing Map Classification

7 Bands
MODIS MCD43C3

bihemispherical reflectance 



Self Organizing Map Classification

7 Bands
MODIS MCD43C3

bihemispherical reflectance 



Self Organizing Map Classification

7 Bands
MODIS MCD43C3

bihemispherical reflectance 



All 1000-Classes mapped for North Africa



Libyan Dust Event: May 9, 2010 (8Z – 12Z)
Jabal al Akhdar (الجبل الأخضر  Al Ǧabal al 'Aḫḍar, English: Green Mountains)
A coastal mountain range with height 1.0-1.5 km.
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Plumes originate on leeward side of
Al Jabal al Akhdar where drainage occurs 
along slopes.

Corresponding SOM-Classes: 49, 93, 94

Libyan Dust Event: May 9, 2010 (6Z – 8Z)
Jabal al Akhdar (الجبل الأخضر  Al Ǧabal al 'Aḫḍar, English: Green Mountains)
A coastal mountain range with height 1.0-1.5 km.



Chad: Bodélé Depression 
Dust Event: March 16, 2010 (7Z -12Z)

Located at the southern edge of the Sahara Desert in north central Africa, is the lowest point in Chad. Dust storms from the Bodélé Depression occur on 
average about 100 days per year. The Bodélé depression is a single spot in the Sahara that provides most of the mineral dust to the Amazon forest.
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Selected Classes with Class 137
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Selected Classes Without Class 137

Chad: Bodélé Depression 

NRL MSG-RGB 201101091000 SOM Classes

Class 137 maps diatom 
sediment in depression.



Jan 1, 2006 True Color

Jan 1, 2006 NRL DEP

Sources along New Mexico/Texas border

The North American sources have a different 
spectral signature than those we saw in SW Asia

Agricultural on high planes
Blue dessert areas



Selected Classes for North America (n=64)



All 1000-Classes mapped for South America



All 1000-Classes mapped for South America

Blue colored SOM-Classes are concentrated in 
Atacama and Salar de Uyuni deserts

White areas are salt flats



South America: Bolivia and Chile

July 18, 2010  MODIS Terra True Color 



South America: Bolivia and Chile

July 18, 2010  MODIS Terra True Color Selected SOM-Classes in 200s, 300s, and 400s
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An Objectively Optimized Earth Observing System

The purpose of this project has been to develop a software infrastructure to 
optimally direct observations that allows us to automatically focus on the key 
issues:

1. The scientific goals
2. The decision support criteria
3. The policy decisions

The project was inspired by two ancient sayings:

1. “Wisdom is profitable to direct!”
This inspired the automation of observation direction

2. “The knowledge of ignorance is the beginning of knowledge”
This inspired using quantitative measures of uncertainty (ignorance) to 
select our targets.
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What issues can we address with this system?

• With flexible pointing instruments: 

• What is the optimum real time pointing?

• With flexible mode instruments:

• What is the optimum real time use of zoom in mode?

• When should balloons be launched?

• What are the optimum trajectories for UAVs and aircraft?
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Autonomous Observing System

• Put simply: 
• we use quantitative measures of 

uncertainty to determine our 
future observations and their 
location, 

• we use measures of how 
important it is to make these 
observations to determine the 
scheduling priority of these 
observations. 

• What we do not know is quantified 
by the state vector uncertainty 
supplied by the assimilation 
system. 

• How important it is to make the 
observations is quantified by 
information content also supplied 
by the assimilation system. 

• The geographic extent of the 
uncertainty maxima is one metric 
that can be used to determine 
whether zoom in or survey mode is 
required. 
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The Assimilation System

• At the heart of our autonomous observation direction system is a data 
assimilation system.

• Data Assimilation is a mathematical/statistical approach where we 
combine multiple sources of information on the system we are studying 
to provide our best estimate of the state of that system (the state 
vector) together with an associated uncertainty (the state vector 
uncertainty). 

• Each source of information is weighted by how much we trust it, 
quantified by its uncertainty.

• The sources of information we use here are:

1. Observations

2. Theory (encapsulated in a theoretical deterministic model).
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Autonomous Observing Systems

• The requirements will be varied depending on the 
application.

• The observing system will contain many 
components, orbital and suborbital.
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How do we achieve this?

Ancient Greek Saying

The knowledge of ignorance is 
the beginning of knowledge

The knowledge of ignorance is 
the beginning of knowledge
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Automatic Code Generator for Chemical Kinetics
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Automatic Code Generator for Chemical Kinetics

AutoChem has won 5 NASA Awards
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Sensor Web Simulation in STK

70



71



72



• Autonomous sensor web control is a challenging 
task. So we have used a modular and distributed 
approach.

• The autonomy selection criteria are likely to be 
different depending on the application, hence the 
advantage of modularity. For example:

• For validation campaigns we may want to use 
regions of highest “certainty” as targets. For 
regular operation we may want to use regions 
of lowest “certainty” as targets. 

• We may want to use feature recognition in 
other applications.

Autonomy
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Feature recognition
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Feature recognition

Ship Tracks
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Feature recognition

Ship Tracks
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Original Image

Original Image

Background

Background

Background removed

Subtract Background

Increase Contrast

Increased Contrast

Threshold

Threshold Image

Final

Final Image
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Objectively Optimized 
Mission Planning
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A"Web"2.0"design"application"can"run"on"each"of"these"
workstations."It"both"explicitly"facilitates"communication"
between"the"discipline"engineers"and"enables"objective"

quantitative"optimization"of"the"mission"design.

Engineering 

Requirements

Science Goals

Quantitative 

Optimization
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Large Trade Space
Driven by Science Objectives

• Possible Optimization for:

• Science goals

• Cost

• Mass

• Power

• Coverage (polar?)

• Detector Life

• Retrieval Error

• OSSE scores

• Trade variables:

• Resolution (spatial, spectral)

• Orbit (type, altitude, 
inclination)

• Swath width

• Repeat times

• View

• Spectral regions

• Each requirement is quantified 
with a cost function.

• Multi-objective 
optimization.

78

Team Building



Large Trade Space
Driven by Science Objectives

• Possible Optimization for:

• Science goals

• Cost

• Mass

• Power

• Coverage (polar?)

• Detector Life

• Retrieval Error

• OSSE scores

• Trade variables:

• Resolution (spatial, spectral)

• Orbit (type, altitude, 
inclination)

• Swath width

• Repeat times

• View

• Spectral regions

• Each requirement is quantified 
with a cost function.

• Multi-objective 
optimization.

78



Large Trade Space
Driven by Science Objectives

• Possible Optimization for:

• Science goals

• Cost

• Mass

• Power

• Coverage (polar?)

• Detector Life

• Retrieval Error

• OSSE scores

• Trade variables:

• Resolution (spatial, spectral)

• Orbit (type, altitude, 
inclination)

• Swath width

• Repeat times

• View

• Spectral regions

• Each requirement is quantified 
with a cost function.

• Multi-objective 
optimization.

78

Team Building



Ideas!

• Augment human experience with objectively 
optimized design

• Build on the experience we have had with:

• Objective design of neural networks using 
genetic algorithms

• Software Infrastructure for Autonomous 
observing systems

• Incorporate artificial intelligence and a modeling/
assimilation system
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Why?

• Constrained budget

• Better meet requirements

• Possible route to out of the box solutions

• Antenna example

• Make greater use of resources

• Make decisions less political
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.... go one step further 
and have an observing 

system architect
Potential Payoff:  This structured, analytical approach just might take 

us to a different region or point in the tradespace, with more 
science per dollar and lower cost missions
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Motivation for a Great Architecture

• Architecture is design at the system level

• We have before us the design of an 
unprecedented system to observe the 
earth and monitor climate, fundamental to the 
future of humanity

• The system will have many stakeholders with 
differing and changing needs

• We must design and execute system 
responsive to these needs; that is flexible, 
and returns maximum benefit for the 
investment

• This is what well architected systems do!

Courtesy of Ed Crowley, MIT
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 Elements of an Architecture

• An architecture is a description of the entities of a system and the 
relationship between those entities (Crawley et al.)

• An architecture must be responsive to the needs of all stakeholders, as 
reflected in the system requirements

• Partitions the system into elements, that can be built by individual 
projects, but which will integrate into a agency/ national/ international 
system (of systems) that will best inform us of the changing planet. 

• Describes the function of the system (that delivers benefit), the form of 
the system (what is built), and the operations of the system

Courtesy of Ed Crowley, MIT
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Workflow to Architecture

Understand
 stakeholder

needs

Define 
Requirements

Develop
“vehicle” 
concepts

Develop
Instrument 
concepts

Create
system 
concept

Elaborate
“Sensor” 

architecture

Elaborate
“information” 
architecture

Elaborate
“team” 

architecture

Elaborate
“ops” 

architecture

Courtesy of Ed Crowley, MIT 84



Tracing Stakeholder Value

How do we build a system that produces the greatest value not 
only to the climate scientists, but to all of the stakeholders, 
including commercial, other agencies, and the public?

Courtesy of Ed Crowley, MIT 85



Courtesy of Ed Crowley, MIT
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CAMPAIGN DESIGN
• Enumerate and evaluate all feasible 

architectures
– Systems architecture principles applied 

to the scheduling and implementation of 
large, complex space satellite systems

– Used “OPN” to enumerate constrained 
space

– Utilized value functions and decision 
metrics to evaluate and rank set of 
feasible architectures

– Down-select to a handful of favorable 
concepts to be carried forward for more 
detailed study and development

• Calibrated to Decadal Survey
– Extensive interviewing process 

captured tacit decision rules used by DS 
panel members to arrive at 
recommended architecture

– Reproduced recommended campaign 
order of 17 DS missions

• Used to explore reordering optimized to 
more realistic budget and costs

– Implement new measurement 
objectives, and study affects on 
campaign architecture

– Adapt campaign to various budget 
constraints

Courtesy of Ed Crowley, MIT 87


